Breast-torso movement coordination during running in different breast support.
Biomechanics
Bra
Breast
Coupling
Female
Nonlinear dynamics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
received:
26
03
2024
accepted:
27
08
2024
medline:
13
9
2024
pubmed:
13
9
2024
entrez:
12
9
2024
Statut:
epublish
Résumé
To reduce breast motion with a bra, we need to understand what drives the motion of the breasts, and what variables change as support increases. Quantifying breast-torso coordination and movement complexity across the gait cycle may offer deeper insights than previously reported discrete time lag. We aimed to compare breast-torso coordination and mutual influence across breast support conditions during running. Twelve female participants ran on a treadmill at 10 km h
Identifiants
pubmed: 39266598
doi: 10.1038/s41598-024-71337-y
pii: 10.1038/s41598-024-71337-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21365Informations de copyright
© 2024. The Author(s).
Références
Norris, M., Mills, C., Sanchez, A. & Wakefield-Scurr, J. Do static and dynamic activities induce potentially damaging breast skin strain?. BMJ Open Sport Exerc. Med. 6, 10 (2020).
doi: 10.1136/bmjsem-2020-000770
Gibson Taylor, M., Langenderfer Joseph, E. & Ustinova Ksenia, I. Effects of breast motion on lower-body kinematics during running. (2020).
Powell, D. W. et al. Breast support alters trunk rotation and trunk rotation variability during treadmill running: An SPM analysis: 460. Med. Sci. Sports Exerc. 54, 110–111 (2022).
doi: 10.1249/01.mss.0000876428.86268.a0
Risius, D., Milligan, A., Berns, J., Brown, N. & Scurr, J. Understanding key performance indicators for breast support: An analysis of breast support effects on biomechanical, physiological and subjective measures during running. J. Sports Sci. 35, 842–851 (2017).
doi: 10.1080/02640414.2016.1194523
pubmed: 27291899
Scurr, J., White, J. & Hedger, W. Breast displacement in three dimensions during the walking and running gait cycles. J. Appl. Biomech. 25, 322–329 (2009).
doi: 10.1123/jab.25.4.322
pubmed: 20095453
McGhee, D. E. & Steele, J. R. Breast biomechanics: What do we really know?. Physiology 35, 144–156 (2020).
doi: 10.1152/physiol.00024.2019
pubmed: 32027563
Hamill, J., Haddad, J. M. & McDermott, W. J. Issues in quantifying variability from a dynamical systems perspective. J. Appl. Biomech. 16, 407–418 (2000).
doi: 10.1123/jab.16.4.407
Chang, R., Van Emmerik, R. & Hamill, J. Quantifying rearfoot–forefoot coordination in human walking. J. Biomech. 41, 3101–3105 (2008).
doi: 10.1016/j.jbiomech.2008.07.024
pubmed: 18778823
Needham, R. A., Naemi, R. & Chockalingam, N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J. Biomech. 48, 3506–3511 (2015).
doi: 10.1016/j.jbiomech.2015.07.023
pubmed: 26303167
Sparrow, W., Donovan, E., Van Emmerik, R. & Barry, E. Using relative motion plots to measure changes in intra-limb and inter-limb coordination. J. Mot. Behav. 19, 115–129 (1987).
doi: 10.1080/00222895.1987.10735403
pubmed: 23944916
Tepavac, D. & Field-Fote, E. C. Vector coding: A technique for quantification of intersegmental coupling in multicyclic behaviors. J. Appl. Biomech. 17, 259–270 (2001).
doi: 10.1123/jab.17.3.259
Needham, R. A., Naemi, R., Hamill, J. & Chockalingam, N. Analysing patterns of coordination and patterns of control using novel data visualisation techniques in vector coding. Foot 44, 101678 (2020).
doi: 10.1016/j.foot.2020.101678
pubmed: 32629370
Catena, R. D., Bailey, J. P., Campbell, N., Stewart, B. C. & Marion, S. J. Correlations between joint kinematics and dynamic balance control during gait in pregnancy. Gait Posture 80, 106–112 (2020).
doi: 10.1016/j.gaitpost.2020.05.025
pubmed: 32502792
Miller, R. H., Chang, R., Baird, J. L., Van Emmerik, R. E. & Hamill, J. Variability in kinematic coupling assessed by vector coding and continuous relative phase. J. Biomech. 43, 2554–2560 (2010).
doi: 10.1016/j.jbiomech.2010.05.014
pubmed: 20541759
Needham, R., Naemi, R. & Chockalingam, N. Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. J. Biomech. 47, 1020–1026 (2014).
doi: 10.1016/j.jbiomech.2013.12.032
pubmed: 24485511
Needham, R., Naemi, R., Healy, A. & Chockalingam, N. Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait. Prosthet. Orthot. Int. 40, 624–635 (2016).
doi: 10.1177/0309364615579319
pubmed: 25991730
Yen, S.-C., Chui, K. K., Corkery, M. B., Allen, E. A. & Cloonan, C. M. Hip-ankle coordination during gait in individuals with chronic ankle instability. Gait Posture 53, 193–200 (2017).
doi: 10.1016/j.gaitpost.2017.02.001
pubmed: 28199924
Weir, G., van Emmerik, R., Jewell, C. & Hamill, J. Coordination and variability during anticipated and unanticipated sidestepping. Gait Posture 67, 1–8 (2019).
doi: 10.1016/j.gaitpost.2018.09.007
pubmed: 30245239
Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometr. J. Econometr. Soc. 424–438 (1969).
Page, K.-A. & Steele, J. R. Breast motion and sports brassiere design. Sports Med. 27, 205–211 (1999).
doi: 10.2165/00007256-199927040-00001
pubmed: 10367331
Starr, C. et al. Biomechanical analysis of a prototype sports bra. J. Text. Appar. Technol. Manag. 4, 1–14 (2005).
Scurr, J. C., White, J. L. & Hedger, W. Supported and unsupported breast displacement in three dimensions across treadmill activity levels. J. Sports Sci. 29, 55–61 (2011).
doi: 10.1080/02640414.2010.521944
pubmed: 21077006
Haake, S. & Scurr, J. A dynamic model of the breast during exercise. Sports Eng. 12, 189–197 (2010).
doi: 10.1007/s12283-010-0046-z
van Emmerik, R. E. & van Wegen, E. E. On variability and stability in human movement. J. Appl. Biomech. 16, 394–406 (2000).
doi: 10.1123/jab.16.4.394
McGhee, D. E., Power, B. M. & Steele, J. R. Does deep water running reduce exercise-induced breast discomfort?. Br. J. Sports Med. 41, 879–883 (2007).
doi: 10.1136/bjsm.2007.036251
pubmed: 17535854
pmcid: 2658982
Thordarson, D. B. Running biomechanics. Clin. Sports Med. 16, 239–247 (1997).
doi: 10.1016/S0278-5919(05)70019-3
pubmed: 9238307
Fong, H. B. & Powell, D. W. Greater breast support is associated with reduced oxygen consumption and greater running economy during a treadmill running task. Front. Sports Act. Living. 223 (2022).
Mills, C. & Jones, M. Changes in lumbar joint moments using a female specific torso and dynamic breast model during running. ISBS Proc. Arch. 40, 463 (2022).
McGhee, D. E. & Steele, J. R. Optimising breast support in female patients through correct bra fit. A cross-sectional study. J. Sci. Med. Sport 13, 568–572 (2010).
doi: 10.1016/j.jsams.2010.03.003
pubmed: 20451452
White, J. & Scurr, J. Evaluation of professional bra fitting criteria for bra selection and fitting in the UK. Ergonomics 55, 704–711 (2012).
doi: 10.1080/00140139.2011.647096
pubmed: 22397508
Mason, B. R., Page, K.-A. & Fallon, K. An analysis of movement and discomfort of the female breast during exercise and the effects of breast support in three cases. J. Sci. Med. Sport 2, 134–144 (1999).
doi: 10.1016/S1440-2440(99)80193-5
pubmed: 10476977
Exell, T. A. et al. There are two sides to every story: Implications of asymmetry on breast support requirements for sports bra manufacturers. Sport. Biomech. 1–13 (2019).
Norris, M., Blackmore, T., Horler, B. & Wakefield-Scurr, J. How the characteristics of sports bras affect their performance. Ergonomics 64, 410–425 (2021).
doi: 10.1080/00140139.2020.1829090
pubmed: 32981459
Norris, M. et al. The kinematics of breasts implanted with a reduced mass implant: A pilot study. Aesthet. Surg. J. 40, NP253-NP262 (2019).
Mills, C., Loveridge, A., Milligan, A., Risius, D. & Scurr, J. Is torso soft tissue motion really an artefact within breast biomechanics research?. J. Biomech. 47, 2606–2610 (2014).
doi: 10.1016/j.jbiomech.2014.05.023
pubmed: 24953261
Mills, C., Loveridge, A., Milligan, A., Risius, D. & Scurr, J. Can axes conventions of the trunk reference frame influence breast displacement calculation during running?. J. Biomech. 47, 575–578 (2014).
doi: 10.1016/j.jbiomech.2013.11.041
pubmed: 24342499
Zijlstra, W. & Hof, A. L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18, 1–10 (2003).
doi: 10.1016/S0966-6362(02)00190-X
pubmed: 14654202
Reeves, J. E., Williams, G., Mills, C. & Wakefield-Scurr, J. In International Society of Posture and Gait Research.
Scurr, J. C., White, J. L. & Hedger, W. The effect of breast support on the kinematics of the breast during the running gait cycle. J. Sports Sci. 28, 1103–1109 (2010).
doi: 10.1080/02640414.2010.497542
pubmed: 20686995
Batschelet, E. Circular Statistics in Biology (Academic Press, 1981).
Lim, J. et al. Additional helmet and pack loading reduce situational awareness during the establishment of marksmanship posture. Ergonomics 60, 824–836 (2017).
doi: 10.1080/00140139.2016.1222001
pubmed: 27594581
Behrendt, S., Dimpfl, T., Peter, F. J. & Zimmermann, D. J. RTransferEntropy—Quantifying information flow between different time series using effective transfer entropy. SoftwareX 10, 100265 (2019).
doi: 10.1016/j.softx.2019.100265
Pataky, T. C., Robinson, M. A. & Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 46, 2394–2401 (2013).
doi: 10.1016/j.jbiomech.2013.07.031
pubmed: 23948374