Molecular and micro-architectural mapping of gray matter alterations in psychosis.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
received:
13
02
2024
accepted:
23
08
2024
revised:
21
08
2024
medline:
13
9
2024
pubmed:
13
9
2024
entrez:
12
9
2024
Statut:
aheadofprint
Résumé
The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α
Identifiants
pubmed: 39266711
doi: 10.1038/s41380-024-02724-0
pii: 10.1038/s41380-024-02724-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Hanlon FM, Dodd AB, Ling JM, Shaff NA, Stephenson DD, Bustillo JR, et al. The clinical relevance of gray matter atrophy and microstructural brain changes across the psychosis continuum. Schizophr Res. 2021;229:12–21.
pubmed: 33607607
pmcid: 8137524
doi: 10.1016/j.schres.2021.01.016
Manchia M, Isayeva U, Collu R, Primavera D, Deriu L, Caboni E, et al. Converging evidence points to BDNF as biomarker of depressive symptoms in schizophrenia-spectrum disorders. Brain Sci. 2022;12:1666.
pubmed: 36552127
pmcid: 9775399
doi: 10.3390/brainsci12121666
Howes OD, Egerton A, Allan V, Mcguire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. 2009;15:2550–9.
Vassos E, Sham P, Kempton M, Trotta A, Stilo SA, Gayer-Anderson C, et al. The Maudsley environmental risk score for psychosis. Psychol Med. 2020;50:2213–20.
pubmed: 31535606
doi: 10.1017/S0033291719002319
Honea RA, Meyer-Lindenberg A, Hobbs KB, Pezawas L, Mattay VS, Egan MF, et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiatry. 2008;63:465–74.
pubmed: 17689500
doi: 10.1016/j.biopsych.2007.05.027
Tarbox SI, Pogue-Geile MF. A multivariate perspective on schizotypy and familial association with schizophrenia: a review. Clin Psychol Rev. 2011;31:1169–82.
pubmed: 21855827
pmcid: 3176972
doi: 10.1016/j.cpr.2011.07.002
Alfimova M, Uvarova L. Cognitive peculiarities in relatives of schizophrenic and schizoaffective patients: heritability and resting EEG-correlates. Int J Psychophysiol. 2003;49:201–16.
pubmed: 14507439
doi: 10.1016/S0167-8760(03)00133-8
van Haren NEM, Pol HEH, Schnack HG, Cahn W, Brans R, Carati I, et al. Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry. 2008;63:106–13.
pubmed: 17599810
doi: 10.1016/j.biopsych.2007.01.004
Liloia D, Brasso C, Cauda F, Mancuso L, Nani A, Manuello J, et al. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: a revised coordinate-based meta-analysis. Neurosci Biobehav Rev. 2021;123:83–103.
pubmed: 33497790
doi: 10.1016/j.neubiorev.2021.01.010
Sun D, Phillips L, Velakoulis D, Yung A, McGorry PD, Wood SJ, et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr Res. 2009;108:85–92.
pubmed: 19138834
pmcid: 2670732
doi: 10.1016/j.schres.2008.11.026
Goghari VM, Rehm K, Carter CS, MacDonald AW. Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients. Cerebral Cortex. 2007;17:415–24.
pubmed: 16547347
doi: 10.1093/cercor/bhj158
Madre M, Canales-Rodríguez EJ, Ortiz-Gil J, Murru A, Torrent C, Bramon E, et al. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review. Acta Psychiatr Scand. 2016;134:16–30.
pubmed: 27028168
doi: 10.1111/acps.12564
Amann BL, Canales-Rodríguez EJ, Madre M, Radua J, Monte G, Alonso-Lana S, et al. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder. Acta Psychiatr Scand. 2016;133:23–33.
pubmed: 25968549
doi: 10.1111/acps.12440
Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci. 2018;72:556–71.
pubmed: 29717522
doi: 10.1111/pcn.12670
Kaczkurkin AN, Raznahan A, Satterthwaite TD. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology. 2019;44:71–85.
pubmed: 29930385
doi: 10.1038/s41386-018-0111-z
Schultze-Lutter F, Schimmelmann BG, Flückiger R, Michel C. Effects of age and sex on clinical high-risk for psychosis in the community. World J Psychiatry. 2020;10:101–124.
pubmed: 32477906
pmcid: 7243619
doi: 10.5498/wjp.v10.i5.101
Riecher-Rössler A, Butler S, Kulkarni J. Sex and gender differences in schizophrenic psychoses—a critical review. Arch Womens Ment Health. 2018;21:627–48.
pubmed: 29766281
doi: 10.1007/s00737-018-0847-9
Yu F, Xu Y, Hou Y, Lin Y, Jiajue R, Jiang Y, et al. Age-, site-, and sex-specific normative centile curves for HR-pQCT-derived microarchitectural and bone strength parameters in a Chinese mainland population. J Bone Mineral Res. 2020;35:2159–70.
doi: 10.1002/jbmr.4116
Watson L, Cole TJ, Lyons G, Georgiou C, Worsley J, Carr K, et al. Centile reference chart for resting metabolic rate through the life course. Arch Dis Child. 2023. https://doi.org/10.1136/archdischild-2022-325249 .
Bethlehem RAI, Seidlitz J, White SR. Lifespan brain chart consortium, Bullmore ET, Alexander-Bloch AF. Brain charts for the human lifespan. Nature. 2022;604:525–33.
pubmed: 35388223
pmcid: 9021021
doi: 10.1038/s41586-022-04554-y
Yang AC, Tsai SJ. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18:1689.
pubmed: 28771182
pmcid: 5578079
doi: 10.3390/ijms18081689
Stein A, Zhu C, Du F, Öngür D. Magnetic resonance spectroscopy studies of brain energy metabolism in schizophrenia: progression from prodrome to chronic psychosis. Curr Psychiatry Rep. 2023;25:659–69.
Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother. 2009;9:1059–71.
pubmed: 19589054
doi: 10.1586/ern.09.59
Nazeri A, Schifani C, Anderson JAE, Ameis SH, Voineskos AN. In vivo imaging of gray matter microstructure in major psychiatric disorders: opportunities for clinical translation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:855–64.
pubmed: 32381477
Cannon TD, Thompson PM, van Erp TGM, Toga AW, Poutanen V-P, Huttunen M, et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 2002;99:3228–33.
pubmed: 11867725
pmcid: 122501
doi: 10.1073/pnas.052023499
Stauffer E-M, Bethlehem RA, Dorfschmidt L, Won H, Bullmore ET. The genetic relationships between brain structure and schizophrenia. MedRxiv. 2023. 2023. https://doi.org/10.1101/2023.03.13.23287137 .
Fusar-Poli P, Borgwardt S, Crescini A, Deste G, Kempton MJ, Lawrie S, et al. Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis. Neurosci Biobehav Rev. 2011;35:1175–85.
pubmed: 21168439
doi: 10.1016/j.neubiorev.2010.12.005
Romero-Garcia R, Mandal AS, Bethlehem RAI, Crespo-Facorro B, Hart MG, Suckling J. Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain. 2023;146:1200–11.
pubmed: 36256589
doi: 10.1093/brain/awac378
Wei Q, Zhao L, Zou Y, Wang J, Qiu Y, Niu M, et al. The role of altered brain structural connectivity in resilience, vulnerability, and disease expression to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;101:109917.
Stone JM, Day F, Tsagaraki H, Valli I, McLean MA, Lythgoe DJ, et al. Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry. 2009;66:533–9.
pubmed: 19559402
doi: 10.1016/j.biopsych.2009.05.006
Garavan H, Bartsch H, Conway K, Decastro A, Goldstein RZ, Heeringa S, et al. Recruiting the ABCD sample: design considerations and procedures. Dev Cogn Neurosci. 2018;32:16–22.
pubmed: 29703560
pmcid: 6314286
doi: 10.1016/j.dcn.2018.04.004
Loughland C, Draganic D, Mccabe K, Richards J, Nasir A, Allen J, et al. Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. Aust N Z J Psychiatry. 2010. https://doi.org/10.3109/00048674.2010.501758 .
Hill SK, Reilly JL, Keefe RS, Gold JM, Bishop JR, Gershon ES, et al. Neuropsychological impairments in schizophrenia and psychotic Bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am J Psychiatry. 2013;170:1275–84.
pubmed: 23771174
pmcid: 5314430
doi: 10.1176/appi.ajp.2013.12101298
Poldrack RA, Congdon E, Triplett W, Gorgolewski KJ, Karlsgodt KH, Mumford JA, et al. A phenome-wide examination of neural and cognitive function. Sci Data. 2016;3:160110.
pubmed: 27922632
pmcid: 5139672
doi: 10.1038/sdata.2016.110
Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, et al. The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics. 2013;11:367–88.
pubmed: 23760817
pmcid: 3727653
doi: 10.1007/s12021-013-9184-3
Neilson E, Shen X, Cox SR, Clarke TK, Wigmore EM, Gibson J, et al. Impact of polygenic risk for schizophrenia on cortical structure in UK biobank. Biol Psychiatry. 2019;86:536–44.
pubmed: 31171358
doi: 10.1016/j.biopsych.2019.04.013
Crespo-Facorro B, Rocío Pérez-Iglesias, Mariluz Ramirez-Bonilla, Martínez-García O, Llorca J, Luis Vázquez-Barquero J. A practical clinical trial comparing haloperidol, risperidone, and olanzapine for the acute treatment of first-episode nonaffective psychosis. J Clin Psychiatry. 2006;67:1511–21.
Drakesmith M, Dutt A, Fonville L, Zammit S, Reichenberg A, Evans CJ, et al. Mediation of developmental risk factors for psychosis by white matter microstructure in young adults with psychotic experiences. JAMA Psychiatry. 2016;73:396–406.
pubmed: 26886143
doi: 10.1001/jamapsychiatry.2015.3375
Fraser A, Macdonald-wallis C, Tilling K, Boyd A, Golding J, Davey smith G, et al. Cohort profile: the Avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.
pubmed: 22507742
doi: 10.1093/ije/dys066
Stasinopoulos DM, Rigby RA. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. J Stat Softw. 2007;23:1–46.
Hansen JY, Shafiei G, Markello RD, Smart K, Cox SML, Nørgaard M, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci. 2022;25:1569–81.
pubmed: 36303070
pmcid: 9630096
doi: 10.1038/s41593-022-01186-3
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun. 2023;14:6000.
pubmed: 37752115
pmcid: 10522715
doi: 10.1038/s41467-023-41689-6
Mihalik A, Chapman J, Adams RA, Winter NR, Ferreira FS, Shawe-Taylor J, et al. Canonical correlation analysis and partial least squares for identifying brain–behavior associations: a tutorial and a comparative study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:1055–67.
pubmed: 35952973
Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry. 2018;75:1146–55.
pubmed: 30304337
pmcid: 6248110
doi: 10.1001/jamapsychiatry.2018.2467
Gur RC, Calkins ME, Satterthwaite TD, Ruparel K, Bilker WB, Moore TM, et al. Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry. 2014;71:366–74.
pubmed: 24499990
doi: 10.1001/jamapsychiatry.2013.4190
Calvo A, Delvecchio G, Altamura AC, Soares JC, Brambilla P. Gray matter differences between affective and non-affective first episode psychosis: a review of Magnetic Resonance Imaging studies. J Affect Disord. 2019;243:564–74.
pubmed: 29625792
doi: 10.1016/j.jad.2018.03.008
Ivleva EI, Bidesi AS, Thomas BP, Meda SA, Francis A, Moates AF, et al. Brain gray matter phenotypes across the psychosis dimension. Psychiatry Res Neuroimaging. 2012;204:13–24.
doi: 10.1016/j.pscychresns.2012.05.001
Zugman A, Assunção I, Vieira G, Gadelha A, White TP, Oliveira PPM, et al. Structural covariance in schizophrenia and first-episode psychosis: an approach based on graph analysis. J Psychiatr Res. 2015;71:89–96.
pubmed: 26458012
doi: 10.1016/j.jpsychires.2015.09.018
Ohi K, Shimada T, Nemoto K, Kataoka Y, Yasuyama T, Kimura K, et al. Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume. Neuroimage Clin. 2017;16:248–56.
pubmed: 28831376
pmcid: 5554933
doi: 10.1016/j.nicl.2017.08.008
Drakesmith M, Dutt A, Fonville L, Zammit S, Reichenberg A, Evans CJ, et al. Volumetric, relaxometric and diffusometric correlates of psychotic experiences in a non-clinical sample of young adults. Neuroimage Clin. 2016;12:550–8.
pubmed: 27689019
pmcid: 5031471
doi: 10.1016/j.nicl.2016.09.002
Sullivan SA, Kounali D, Cannon M, David AS, Fletcher PC, Holmans P, et al. A population-based cohort study examining the incidence and impact of psychotic experiences from childhood to adulthood, and prediction of psychotic disorder. Am J Psychiatry. 2020;177:308–17.
pubmed: 31906710
doi: 10.1176/appi.ajp.2019.19060654
Zhao Y, Zhang Q, Shah C, Li Q, Sweeney JA, Li F, et al. Cortical thickness abnormalities at different stages of the illness course in schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2022;79:560–70.
pubmed: 35476125
pmcid: 9047772
doi: 10.1001/jamapsychiatry.2022.0799
Cao X. Brain structural alterations in schizophrenia and their non-affected relatives: a voxel-based morphometric study. Proceedings - 2020 2nd International Conference on Information Technology and Computer Application, ITCA 2020, Institute of Electrical and Electronics Engineers Inc.; 2020. p. 604–608.
Maller JJ, Anderson RJ, Thomson RH, Daskalakis ZJ, Rosenfeld JV, Fitzgerald PB. Occipital bending in schizophrenia. Aust N Z J Psychiatry. 2017;51:32–41.
pubmed: 27066817
doi: 10.1177/0004867416642023
Gutiérrez-Galve L, Chu EM, Leeson VC, Price G, Barnes TRE, Joyce EM, et al. A longitudinal study of cortical changes and their cognitive correlates in patients followed up after first-episode psychosis. Psychol Med. 2015;45:205–16.
pubmed: 24990283
doi: 10.1017/S0033291714001433
Frodl T, Koutsouleris N, Bottlender R, Born C, Jäger M, Mörgenthaler M, et al. Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression. Mol Psychiatry. 2008;13:1093–101.
pubmed: 19008895
doi: 10.1038/mp.2008.62
Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020;11:246.
Pontillo G, Petracca M, Monti S, Quarantelli M, Criscuolo C, Lanzillo R, et al. Unraveling deep gray matter atrophy and iron and myelin changes in multiple sclerosis. Am J Neuroradiol. 2021;42:1223–30.
pubmed: 33888456
pmcid: 8324266
doi: 10.3174/ajnr.A7093
Oh H, Habeck C, Madison C, Jagust W. Covarying alterations in Aβ deposition, glucose metabolism, and gray matter volume in cognitively normal elderly. Hum Brain Mapp. 2014;35:297–308.
pubmed: 22965806
doi: 10.1002/hbm.22173
Zhang Y, Catts VS, Sheedy D, McCrossin T, Kril JJ, Shannon Weickert C. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl Psychiatry. 2016;6:e982.
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, et al. Regional patterns of human cortex development correlate with underlying neurobiology. BioRxiv. 2024:2023.05.05.539537.
Yang H, Wu G, Li Y, Ma Y, Chen R, Pines A, et al. Connectional hierarchy in human brain revealed by individual variability of functional network edges. BioRxiv. 2023. https://doi.org/10.1101/2023.03.08.531800 .
Luppi AI, Hansen JY, Adapa R, Carhart-Harris RL, Roseman L, Timmermann C, et al. In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape. Sci Adv. 2023;9:eadf332.
Price DL, Bonhaus DW, McFarland K. Pimavanserin, a 5-HT2A receptor inverse agonist, reverses psychosis-like behaviors in a rodent model of Alzheimer’s disease. Behav Pharmacol. 2012;23:426–33.
pubmed: 22750845
doi: 10.1097/FBP.0b013e3283566082
De Luca V, Viggiano E, Dhoot R, Kennedy JL, Wong AHC. Methylation and QTDT analysis of the 5-HT2A receptor 102C allele: analysis of suicidality in major psychosis. J Psychiatr Res. 2009;43:532–7.
pubmed: 18783799
doi: 10.1016/j.jpsychires.2008.07.007
McFarland K, Price DL, Bonhaus DW. Pimavanserin, a 5-HT2A inverse agonist, reverses psychosis-like behaviors in a rodent model of Parkinson’s disease. Behav Pharmacol. 2011;22:681–92.
pubmed: 21921840
doi: 10.1097/FBP.0b013e32834aff98
Radek RJ, Kohlhaas KL, Rueter LE, Mohler EG. Treating the cognitive deficits of schizophrenia with Alpha4Beta2 neuronal nicotinic receptor agonists. Current Pharmaceutical Design. 2010;16:09-22.
Whitaker KJ, Vértes PE, Romero-Garciaa R, Váša F, Moutoussis M, Prabhu G, et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci USA 2016;113:9105–10.
pubmed: 27457931
pmcid: 4987797
doi: 10.1073/pnas.1601745113
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, et al. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med. 2023;53:5235–45.
Kapellou O, Counsell SJ, Kennea N, Dyet L, Saeed N, Stark J, et al. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med. 2006. https://doi.org/10.1371/journal.pmed .
Sikela JM, Searles Quick VB. Genomic trade-offs: are autism and schizophrenia the steep price of the human brain? Hum Genet. 2018;137:1–13.
pubmed: 29335774
pmcid: 5898792
doi: 10.1007/s00439-017-1865-9
Smiley JF, Konnova K, Bleiwas C. Cortical thickness, neuron density and size in the inferior parietal lobe in schizophrenia. Schizophr Res. 2012;136:43–50.
pubmed: 22304984
doi: 10.1016/j.schres.2012.01.006
Germann M, Brederoo SG, Sommer IEC. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Curr Opin Psychiatry. 2021;34:222–7.
pubmed: 33560023
pmcid: 8048735
doi: 10.1097/YCO.0000000000000696
Liu N, Xiao Y, Zhang W, Tang B, Zeng J, Hu N, et al. Characteristics of gray matter alterations in never-treated and treated chronic schizophrenia patients. Transl Psychiatry. 2020;10:136.
pubmed: 32398765
pmcid: 7217843
doi: 10.1038/s41398-020-0828-4
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.
pubmed: 35296861
pmcid: 8991999
doi: 10.1038/s41586-022-04492-9