Ecological differentiation and sympatry of cryptic species in the Sphagnum magellanicum complex (Bryophyta).

DNA barcoding Sphagnaceae Sphagnum diabolicum Sphagnum divinum Sphagnum magniae Sphagnum medium community assembly peatmoss

Journal

American journal of botany
ISSN: 1537-2197
Titre abrégé: Am J Bot
Pays: United States
ID NLM: 0370467

Informations de publication

Date de publication:
12 Sep 2024
Historique:
revised: 05 06 2024
received: 30 01 2024
accepted: 06 06 2024
medline: 15 9 2024
pubmed: 15 9 2024
entrez: 13 9 2024
Statut: aheadofprint

Résumé

Sphagnum magellanicum (Sphagnaceae, Bryophyta) has been considered to be a single semi-cosmopolitan species, but recent molecular analyses have shown that it comprises a complex of at least seven reciprocally monophyletic groups, that are difficult or impossible to distinguish morphologically. Newly developed barcode markers and RADseq analyses were used to identify species among 808 samples from 119 sites. Molecular approaches were used to assess the geographic ranges of four North American species, the frequency at which they occur sympatrically, and ecological differentiation among them. Microhabitats were classified with regard to hydrology and shade. Hierarchical modelling of species communities was used to assess climate variation among the species. Climate niches were projected back to 22,000 years BP to assess the likelihood that the North American species had sympatric ranges during the late Pleistocene. The species exhibited parallel morphological variation, making them extremely difficult to distinguish phenotypically. Two to three species frequently co-occurred within peatlands. They had broadly overlapping microhabitat and climate niches. Barcode- versus RADseq-based identifications were in conflict for 6% of the samples and always involved S. diabolicum vs. S. magniae. These species co-occur within peatlands at scales that could permit interbreeding, yet they remain largely distinct genetically and phylogenetically. The four cryptic species exhibited distinct geographic and ecological patterns. Conflicting identifications from barcode vs. RADseq analyses for S. diabolicum versus S. magniae could reflect incomplete speciation or hybridization. They comprise a valuable study system for additional work on climate adaptation.

Identifiants

pubmed: 39267427
doi: 10.1002/ajb2.16401
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e16401

Informations de copyright

© 2024 Botanical Society of America.

Références

Agresti, A. 2007. An introduction to categorical data analysis. John Wiley, Hoboken, NJ, USA.
Bączkiewicz, A., M. Szczecińska, J. Sawicki, A. Stebel, and K. Buczkowska. 2017. DNA barcoding, ecology and geography of the cryptic species of Aneura pinguis and their relationships with Aneura maxima and Aneura mirabilis (Metzgeriales, Marchantiophyta). PLoS One 12: e0188837.
Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram, and I. Das. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.
Chase, M. W., N. Salamin, M. Wilkinson, J. M. Dunwell, R. P. Kesanakurthi, N. Haidar, and V. Savolainen. 2005. Land plants and DNA barcodes: Short‐term and long‐term goals. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1889–1895.
Crum, H. A. 1984. Sphagnopsida, Sphagnaceae. North American flora, series II, part 11, 1–180. New York Botanical Garden, Bronx, NY, USA.
Duffy, A. M., B. Aguero, H. K. Stenøien, K. I. Flatberg, M. S. Ignatov, K. Hassel, and A. J. Shaw. 2020. Phylogenetic structure in the Sphagnum recurvum complex (Bryophyta) in relation to taxonomy and geography. American Journal of Botany 107: 1283–1295.
Eaton, D. A. R., and I. Overcast. 2020. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36: 2592–2594.
Francis, C. M., A. V. Borisenko, N. V. Ivanova, J. L. Eger, B. K. Lim, A. Guillén‐Servent, S. V. Kruskop, et al. 2010. The role of DNA barcodes in understanding and conservation of mammal diversity in southeast Asia. PLoS One 5: e12575.
Grundmann, M., H. Schneider, S. Russell, and J. Vogel. 2006. Phylogenetic relationships of the moss genus Pleurochaete Lindb. (Bryales: Pottiaceae) based on chloroplast and nuclear genomic markers. Organisms Diversity and Evolution 6: 33–45.
Hassel, K., M. Kyrkjeeide, N. Yousefi, T. Prestø, H. Stenøien, A. J. Shaw, and K. I. Flatberg. 2018. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. Journal of Bryology 40: 1–26.
Healey, A. L., B. T. Piatkowski, J. T. Lovell, A. Sreedasyam, S. B. Carey, S. Mamidi, S. Shu, et al. 2023. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. Nature Plants 9: 238–254.
Herrera, N. D., K. C. Bell, C. M. Callahan, E. Nordquist, B. A. J. Sarver, J. Sullivan, J. R. Demboski, and J. M. Good. 2022. Genomic resolution of cryptic species diversity in chipmunks. Evolution 76: 2004–2019.
Hoang, D. T., O. Chernomor, A. von Haeseler, B. Q. Minh, and L. S. Vinh. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522.
Hollingsworth, P. M., S. W. Graham, and D. P. Little. 2011. Choosing and using a plant DNA barcode. PLoS One 6: e19254.
Johnson, M. G., G. Granath, T. Tahvanainen, R. Pouliot, H. K. Stenøien, L. Rochefort, H. Rydin, and A. J. Shaw. 2015. Evolution of niche preference in Sphagnum peat mosses. Evolution 69: 90–103.
Johnson, M. G., and A. J. Shaw. 2015. Genetic diversity, sexual condition, and microhabitat preference determine mating patterns in Sphagnum (Sphagnaceae) peat‐mosses. Biological Journal of the Linnean Society 115: 96–11.
Johnson, M. G., and A. J. Shaw. 2016. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum. Heredity 116: 523–530.
Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.
King, J. R., and D. A. Jackson. 1999. Variable selection in large environmental data sets using principal components analysis. Environmetrics 10: 67–77.
Kyrkjeeide, M. O., K. Hassel, K. I. Flatberg, A. J. Shaw, N. Yousefi, and H. K. Stenøien. 2016. Spatial genetic structure of the abundant and widespread peatmoss Sphagnum magellanicum Brid. PLoS One 11: e0148447.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913–925.
Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760.
Malinsky, M., H. Svardal, A. M. Tyers, E. A. Miska, M. J. Genner, G. F. Turner, and R. Durbin. 2018. Whole‐genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecology and Evolution 2: 1940–1955.
Malinsky, M., M. Matschiner, and H. Svardal. 2021. Dsuite ‐ Fast D‐statistics and related admixture evidence from VCF files. Molecular Ecology Resources 21: 584–595.
Martins, S., M. Sim‐Sim, and M. Stech. 2021. The Macaronesian endemic moss Andoa berthelotiana (Myuriaceae, Bryophyta): Phylogenetic relationships and cryptic speciation. Nova Hedwigia 112: 335–357.
Mayr, E. 1942. Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Cambridge, MA, USA.
McQueen, C. B., and R. E. Andrus. 2007. Sphagnaceae. In Flora of North America Editorial Committee [eds.], Bryophytes: Mosses, part 1. Flora of North America, 27, 45–101. Oxford University Press, NY, NY, USA.
Melville, J., K. Smith, R. Hobson, S. Hunjan, and L. Shoo. 2014. The role of integrative taxonomy in the conservation management of cryptic species: The taxonomic status of endangered earless dragons (Agamidae: Tympanocryptis) in the grasslands of Queensland, Australia. PLoS One 9: e101847.
Michalski, S. G., and W. Durka. 2015. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecology and Evolution 5: 2172–2184.
Minh, B. Q., M. A. T. Nguyen, and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195.
Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, and R. Lanfear. 2020. IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534.
Nieto‐Lugilde, M. 2024. Molecular data of cryptic species in the Sphagnum magellanicum complex (Bryophyta) in North America [Dataset]. Dryad. https://doi.org/10.5061/dryad.37pvmcvtk
Nieto‐Lugilde, M., S. Robinson, B. Aguero, A. Duffy, K. Imwattana, K. Hassel, K. I. Flatberg, et al. 2022. Morphological–molecular incongruence in Sphagnum majus ssp. majus and ssp. norvegicum. Bryologist 125: 294–310.
Ovaskainen, O., G. Tikhonov, D. Dunson, V. Grøtan, S. Engen, B. E. Sæther, and N. Abrego. 2017. How are species interactions structured in species‐rich communities? A new method for analysing time‐series data. Proceedings of the Royal Society, B, Biological Sciences 284: 20170768.
Parchman, T. L., Z. Gompert, J. Mudge, F. D. Schilkey, C. W. Benkman, and C. A. Buerkle. 2012. Genome‐wide association genetics of an adaptive trait in lodgepole pine. Molecular Ecology 21: 2991–3005.
Piatkowski, B., D. J. Weston, B. Aguero, A. Duffy, K. Imwattana, A. L. Healey, J. Schmutz, and A. J. Shaw. 2023. Divergent selection fuels genomic differentiation between incipient species of Sphagnum (peat moss). Annals of Botany 132: 499–512.
Piatkowski, B. T., J. B. Yavitt, M. R. Turetsky, and A. J. Shaw. 2021. Natural selection on a carbon cycling trait drives ecosystem engineering by Sphagnum (peat moss). Proceedings of the Royal Society, B, Biological Sciences 288: 20210609.
Piper, A. M., J. Batovska, N. O. I. Cogan, J. Weiss, J. P. Cunningham, B. C. Rodoni, and M. J. Blacket. 2019. Prospects and challenges of implementing DNA metabarcoding for high‐throughput insect surveillance. GigaScience 8: giz092.
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website https://www.R-project.org/
Renner, M. A. M. 2020. Opportunities and challenges presented by cryptic bryophyte species. Telopea 23: 41–60.
Rydin, H., and J. Jeglum. 2013. The biology of peatlands, 2nd ed. Oxford University Press, Oxford, UK.
Schär, S., G. Talavera, J. D. Rana, X. Espadaler, S. P. Cover, S. O. Shattuck, and R. Vila. 2022. Integrative taxonomy reveals cryptic diversity in North American Lasius ants, and an overlooked introduced species. Scientific Reports 12: 5970.
Shaw, A. J., N. Devos, Y. Liu, C. J. Cox, B. Goffinet, K. I. Flatberg, and B. Shaw. 2016. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Annals of Botany 118: 185–196.
Shaw, A. J., A. Duffy, M. Nieto‐Lugilde, B. Aguero, S. Schuette, S. Robinson, J. Loveland, et al. 2023a. Clonality, local population structure and gametophyte sex ratios in cryptic species of the Sphagnum magellanicum complex. Annals of Botany 132: 77–94.
Shaw, A. J., M. Nieto‐Lugilde, B. Aguero, A. M. Duffy, B. T. Piatkowski, J. Jaramillo‐Chico, S. Robinson, et al. 2023b. Sphagnum diabolicum sp. nov. and S. magniae sp. nov.; morphological variation and taxonomy of the “S. magellanicum complex”. Bryologist 126: 69–89.
Shaw, A. J., B. T. Piatkowski, A. M. Duffy, B. Aguero, K. Imwattana, M. Nieto‐Lugilde, A. Healey, et al. 2022. Phylogenomic structure and speciation in an emerging model: The Sphagnum magellanicum complex (Bryophyta). New Phytologist 236: 1497–1511.
Sundberg S., and H. Rydin. 2000. Experimental evidence for a persistent spore bank in Sphagnum. New Phytologist 148: 105–116.
van Breemen, N. 1995. How Sphagnum bogs down other plants. Trends in Ecology and Evolution 10: 270–275.
Van der Auwera, G. A., and O'Connor, B. D. 2020. Genomics in the cloud: Using Docker, GATK, and WDL in Terra. O'Reilly Media, Sebastopol, CA, USA.
Vanderpoorten, A., and A. L. Jacquemart. 2004. Evolutionary mode, tempo, and phylogenetic association of continuous morphological traits in the aquatic moss genus Amblystegium. Journal of Evolutionary Biology 17: 279–287.
Varela, S., R. P. Anderson, R. García‐Valdés, and F. Fernández‐González. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084–1091.
Velazco, S. J. E., M. B. Rose, A. F. A. de Andrade, I. Minoli, and J. Franklin. 2022. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology and Evolution 13: 1661–1669.
Ward, P. S., and B. B. Blaimer. 2022. Taxonomy in the phylogenomic era: Species boundaries and phylogenetic relationships among North American ants of the Crematogaster scutellaris group (Formicidae: Hymenoptera). Zoological Journal of the Linnean Society 194: 893–937.
Williams, P. H., P. Dorji, Z. Ren, Z. Xie, and M. Orr. 2022. Bumblebees of the hypnorum‐complex world‐wide including two new near‐cryptic species (Hymenoptera: Apidae). European Journal of Taxonomy 847: 46–72.
Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T. L. Madden. 2012. Primer‐BLAST: A tool to design target‐specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.
Yousefi, N., K. Hassel, K. I. Flatberg, P. Kemppainen, E. Trucchi, A. J. Shaw, M. O. Kyrkjeeide, et al. 2017. Divergent evolution and niche differentiation within the common peatmoss Sphagnum magellanicum. American Journal of Botany 104: 1060–1072.
Yu, Z., J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37: L13402.
Zachos, F. E. 2018. (New) Species concepts, species delimitation, and the inherent limitations of taxonomy. Journal of Genetics 97: 811–815.

Auteurs

Marta Nieto-Lugilde (M)

Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA.

Diego Nieto-Lugilde (D)

Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain.

Bryan Piatkowski (B)

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37830, TN, USA.

Aaron M Duffy (AM)

Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA.

Sean C Robinson (SC)

Department of Biology, SUNY Oneonta, Oneonta, 13820, NY, USA.

Blanka Aguero (B)

Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA.

Scott Schuette (S)

Pennsylvania Natural Heritage Program, Western Pennsylvania Conservancy, Pittsburgh, 15222, PA, USA.

Richard Wilkens (R)

Biological Sciences Department, Salisbury University, Salisbury, 21801, MD, USA.

Joseph Yavitt (J)

Department of Natural Resources, Cornell University, Ithaca, 14853, NY, USA.

A Jonathan Shaw (AJ)

Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA.

Classifications MeSH