MeCP2 is a naturally supercharged protein with cell membrane transduction capabilities.


Journal

Protein science : a publication of the Protein Society
ISSN: 1469-896X
Titre abrégé: Protein Sci
Pays: United States
ID NLM: 9211750

Informations de publication

Date de publication:
Oct 2024
Historique:
revised: 23 08 2024
received: 24 04 2024
accepted: 26 08 2024
medline: 14 9 2024
pubmed: 14 9 2024
entrez: 14 9 2024
Statut: ppublish

Résumé

The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.

Identifiants

pubmed: 39276009
doi: 10.1002/pro.5170
doi:

Substances chimiques

Methyl-CpG-Binding Protein 2 0
Histone Deacetylases EC 3.5.1.98
MECP2 protein, human 0
histone deacetylase 3 EC 3.5.1.98
Cell-Penetrating Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e5170

Subventions

Organisme : Italian Rett Syndrome Association

Informations de copyright

© 2024 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.

Références

Agrawal P, Bhalla S, Usmani SS, Singh S, Chaudhary K, Raghava GP, et al. Cppsite 2.0: a repository of experimentally validated cell‐penetrating peptides. Nucleic Acids Res. 2016;44(D1):D1098–D1103.
Albarran B, To R, Stayton PS. A TAT–streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Eng Des Sel. 2005;18(3):147–152.
Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in x‐linked MECP2, encoding methyl‐cpg‐binding protein 2. Nat Genet. 1999;23(2):185–188.
Beribisky AV, Steinkellner H, Geislberger S, Huber A, Sarne V, Christodoulou J, et al. Expression, purification, characterization and cellular uptake of MeCP2 variants. Protein J. 2022;41(2):345–359.
Buschdorf JP, Stratling WH. A WW domain binding region in methyl‐cpg‐binding protein MeCP2: impact on Rett syndrome. J Mol Med (Berl). 2004;82(2):135–143.
Capasso P, Aliprandi M, Ossolengo G, Edenhofer F, de Marco A. Monodispersity of recombinant cre recombinase correlates with its effectiveness in vivo. BMC Biotechnol. 2009;9:80.
Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, et al. Intracellular delivery of a TAT‐eGFP fusion protein into muscle cells. Mol Ther. 2001;3(3):310–318.
Caron NJ, Quenneville SP, Tremblay JP. Endosome disruption enhances the functional nuclear delivery of TAT‐fusion proteins. Biochem Biophys Res Commun. 2004;319(1):12–20.
Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–1229.
Christianson HC, Belting M. Heparan sulfate proteoglycan as a cell‐surface endocytosis receptor. Matrix Biol. 2014;35:51–55.
Chugh A, Eudes F. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS J. 2008;275(10):2403–2414.
Ciftci K, Levy RJ. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int J Pharm. 2001;218(1–2):81–92.
Console S, Marty C, Garcia‐Echeverria C, Schwendener R, Ballmer‐Hofer K. Antennapedia and HiV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem. 2003;278(37):35109–35114.
Cronican JJ, Thompson DB, Beier KT, McNaughton BR, Cepko CL, Liu DR. Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. 2010;5(8):747–752.
Cronican JJ, Beier KT, Davis TN, Tseng JC, Li W, Thompson DB, et al. A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. 2011;18(7):833–838.
Djuric U, Cheung AYL, Zhang W, Mok RS, Lai W, Piekna A, et al. MeCP2e1 isoform mutation affects the form and function of neurons derived from rett syndrome patient ips cells. Neurobiol Dis. 2015;76:37–45.
Flinterman M, Farzaneh F, Habib N, Malik F, Gaken J, Tavassoli M. Delivery of therapeutic proteins as secretable TAT fusion products. Mol Ther. 2009;17(2):334–342.
Forlani G, Giarda E, Ala U, Di Cunto F, Salani M, Tupler R, et al. The MeCP2/YY1 interaction regulates ant1 expression at 4q35: novel hints for rett syndrome pathogenesis. Hum Mol Genet. 2010;19(16):3114–3123.
Freire JM, Veiga AS, Rego de Figueiredo I, de la Torre BG, Santos NC, Andreu D, et al. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. FEBS J. 2014;281(1):191–215.
Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT. Arginine‐rich peptides and their internalization mechanisms. Biochem Soc Trans. 2007;35(Pt 4):784–787.
Gandek TB, van der Koog L, Nagelkerke A. A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv Healthc Mater. 2023;12(25):e2300319.
Geerdink N, Rotteveel JJ, Lammens M, Sistermans EA, Heikens GT, Gabreels FJ, et al. MECP2 mutation in a boy with severe neonatal encephalopathy: clinical, neuropathological and molecular findings. Neuropediatrics. 2002;33(1):33–36.
Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, et al. Ubiquitin hydrolase uch‐l1 rescues beta‐amyloid‐induced decreases in synaptic function and contextual memory. Cell. 2006;126(4):775–788.
Gump JM, June RK, Dowdy SF. Revised role of glycosaminoglycans in TAT protein transduction domain‐mediated cellular transduction. J Biol Chem. 2010;285(2):1500–1507.
Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of rett syndrome. Science. 2007;315(5815):1143–1147.
Hakansson S, Jacobs A, Caffrey M. Heparin binding by the HIV‐1 TAT protein transduction domain. Protein Sci. 2001;10(10):2138–2139.
Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, et al. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc Natl Acad Sci U S A. 2002;99(6):3523–3528.
Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, et al. Arginine‐rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell‐penetrating peptides. Biophys J. 2009;97(7):1917–1925.
Illien F, Rodriguez N, Amoura M, Joliot A, Pallerla M, Cribier S, et al. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell‐penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci Rep. 2016;6:36938.
Ito‐Ishida A, Baker SA, Sillitoe RV, Sun Y, Zhou J, Ono Y, et al. MeCP2 levels regulate the 3d structure of heterochromatic foci in mouse neurons. J Neurosci. 2020;40(45):8746–8766.
Jobin ML, Blanchet M, Henry S, Chaignepain S, Manigand C, Castano S, et al. The role of tryptophans on the cellular uptake and membrane interaction of arginine‐rich cell penetrating peptides. Biochim Biophys Acta. 2015;1848(2):593–602.
Kardani K, Bolhassani A. Cppsite 2.0: an available database of experimentally validated cell‐penetrating peptides predicting their secondary and tertiary structures. J Mol Biol. 2021;433(11):166703.
Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, et al. Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci. 2016;39(2):100–113.
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion‐like domains in hnrnpa2b1 and hnrnpa1 cause multisystem proteinopathy and als. Nature. 2013;495(7442):467–473.
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing rac1 and cdc42 signaling. J Cell Biol. 2010;188(4):547–563.
Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, et al. The ski protein family is required for MeCP2‐mediated transcriptional repression. J Biol Chem. 2001;276(36):34115–34121.
Kruusvee V, Lyst MJ, Taylor C, Tarnauskaite Z, Bird AP, Cook AG. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci U S A. 2017;114(16):E3243–E3250.
Langedijk JP, Olijhoek T, Schut D, Autar R, Meloen RH. New transport peptides broaden the horizon of applications for peptidic pharmaceuticals. Mol Divers. 2004;8(2):101–111.
Lawrence MS, Phillips KJ, Liu DR. Supercharging proteins can impart unusual resilience. J Am Chem Soc. 2007;129(33):10110–10112.
LeCher JC, Nowak SJ, McMurry JL. Breaking in and busting out: cell‐penetrating peptides and the endosomal escape problem. Biomol Concepts. 2017;8(3–4):131–141.
Li CH, Coffey EL, Dall'Agnese A, Hannett NM, Tang X, Henninger JE, et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature. 2020;586(7829):440–444.
Lonn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep. 2016;6:32301.
Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19(1):60.
Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16(5):261–275.
Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co‐repressor. Nat Neurosci. 2013;16(7):898–902.
Lyst MJ, Ekiert R, Guy J, Selfridge J, Koerner MV, Merusi C, et al. Affinity for DNA contributes to NLS independent nuclear localization of MeCP2. Cell Rep. 2018;24(9):2213–2220.
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged proteins and polypeptides. Adv Mater. 2020;32(20):e1905309.
Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, et al. TIA‐1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 2017;95(4):808–816.
Madani F, Lindberg S, Langel U, Futaki S, Graslund A. Mechanisms of cellular uptake of cell‐penetrating peptides. J Biophys. 2011;2011:414729.
McKenzie JA, Barghash RF, Alsaggaf AT, Kulkarni O, Boudreau K, Menard F, et al. Synthesis and evaluation of novel pyrazole ethandiamide compounds as inhibitors of human thp‐1 monocytic cell neurotoxicity. Cells. 2019;8(7):655.
Mi Z, Mai J, Lu X, Robbins PD. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther. 2000;2(4):339–347.
Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to rett syndrome. Nat Genet. 2004;36(4):339–341.
Nan X, Tate P, Li E, Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol. 1996;16(1):414–421.
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl‐cpg‐binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–389.
Nott A, Cheng J, Gao F, Lin YT, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate foxo and social behavior. Nat Neurosci. 2016;19(11):1497–1505.
Ortega‐Alarcon D, Claveria‐Gimeno R, Vega S, Jorge‐Torres OC, Esteller M, Abian O, et al. Stabilization effect of intrinsically disordered regions on multidomain proteins: the case of the methyl‐cpg protein 2, MeCP2. Biomolecules. 2021;11(8):1216.
Ortega‐Alarcon D, Claveria‐Gimeno R, Vega S, Kalani L, Jorge‐Torres OC, Esteller M, et al. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res. 2024;52:3636–3653.
Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, et al. Cell‐penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278(1):585–590.
Ruseska I, Zimmer A. Internalization mechanisms of cell‐penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–123.
Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP. Translocating proline‐rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry. 2002;41(48):14150–14157.
Sahni A, Qian Z, Pei D. Cell‐penetrating peptides escape the endosome by inducing vesicle budding and collapse. ACS Chem Biol. 2020;15(9):2485–2492.
Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci. 2000;21(2):45–48.
Schwarze SR, Ho A, Vocero‐Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285(5433):1569–1572.
Spiga O, Gardini S, Rossi N, Cicaloni V, Pettini F, Niccolai N, et al. Structural investigation of rett‐inducing MeCP2 mutations. Genes Dis. 2019;6(1):31–34.
Steinkellner H, Kempaiah P, Beribisky AV, Pferschy S, Etzler J, Huber A, et al. TAT‐MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. Int J Biol Macromol. 2022;209(Pt A):972–983.
Suzuki K, Bose P, Leong‐Quong RY, Fujita DJ, Riabowol K. Reap: a two minute cell fractionation method. BMC Res Notes. 2010;3:294.
Teo SLY, Rennick JJ, Yuen D, Al‐Wassiti H, Johnston APR, Pouton CW. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat Commun. 2021;12(1):3721.
Thompson DB, Cronican JJ, Liu DR. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293–319.
Tillotson R, Selfridge J, Koerner MV, Gadalla KKE, Guy J, De Sousa D, et al. Radically truncated MeCP2 rescues Rett syndrome‐like neurological defects. Nature. 2017;550(7676):398–401.
Trazzi S, De Franceschi M, Fuchs C, Bastianini S, Viggiano R, Lupori L, et al. Cdkl5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder. Hum Mol Genet. 2018;27(9):1572–1592.
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–228.
Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J, et al. A TAT‐frataxin fusion protein increases lifespan and cardiac function in a conditional friedreich's ataxia mouse model. Hum Mol Genet. 2012;21(6):1230–1247.
Wakefield RI, Smith BO, Nan X, Free A, Soteriou A, Uhrin D, et al. The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol. 1999;291(5):1055–1065.
Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell‐penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014;174:126–136.
Wang L, Geng J, Wang H. Emerging landscape of supercharged proteins and peptides for drug delivery. ACS Pharmacol Transl Sci. 2024;7(3):614–629.
Yang Z, Sun Y, Xian L, Xun Z, Yu J, Yang T, et al. Disulfide‐bond‐containing agamatine‐cystaminebisacrylamide polymer demonstrates better transfection efficiency and lower cytotoxicity than polyethylenimine in NIH/3T3 cells. J Cell Biochem. 2018;119(2):1767–1779.
Yu W, Zhan Y, Xue B, Dong Y, Wang Y, Jiang P, et al. Highly efficient cellular uptake of a cell‐penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem. 2018;293(39):15221–15232.
Yumoto R, Suzuka S, Oda K, Nagai J, Takano M. Endocytic uptake of fitc‐albumin by human alveolar epithelial cell line a549. Drug Metab Pharmacokinetics. 2012;27(3):336–343.
Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M. Novel MeCP2 isoform‐specific antibody reveals the endogenous MeCP2e1 expression in murine brain, primary neurons and astrocytes. PLoS One. 2012;7(11):e49763.
Zhang J, Kanoatov M, Jarvi K, Gauthier‐Fisher A, Moskovtsev SI, Librach C, et al. Germ cell‐specific proteins AKAP4 and ASPX facilitate identification of rare spermatozoa in non‐obstructive azoospermia. Mol Cell Proteomics. 2023;22(6):100556.
Zhang X, Zhang Y, Jia R, Wang M, Yin Z, Cheng A. Structure and function of capsid protein in flavivirus infection and its applications in the development of vaccines and therapeutics. Vet Res. 2021;52(1):98.
Zhang X, Cattoglio C, Zoltek M, Vetralla C, Mozumdar D, Schepartz A. Dose‐dependent nuclear delivery and transcriptional repression with a cell‐penetrant MeCP2. ACS Cent Sci. 2023;9(2):277–288.

Auteurs

Alexander V Beribisky (AV)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.

Anna Huber (A)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria.

Victoria Sarne (V)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria.

Andreas Spittler (A)

Core Facility Flow Cytometry & Department of Surgery, Research Laboratories, Vienna, Austria.

Nyamdelger Sukhbaatar (N)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.

Teresa Seipel (T)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.

Franco Laccone (F)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.

Hannes Steinkellner (H)

Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH