Classification of cervical vertebral maturation stages with machine learning models: leveraging datasets with high inter- and intra-observer agreement.


Journal

Progress in orthodontics
ISSN: 2196-1042
Titre abrégé: Prog Orthod
Pays: Germany
ID NLM: 100936353

Informations de publication

Date de publication:
16 Sep 2024
Historique:
received: 15 04 2024
accepted: 22 07 2024
medline: 16 9 2024
pubmed: 16 9 2024
entrez: 15 9 2024
Statut: epublish

Résumé

This study aimed to assess the accuracy of machine learning (ML) models with feature selection technique in classifying cervical vertebral maturation stages (CVMS). Consensus-based datasets were used for models training and evaluation for their model generalization capabilities on unseen datasets. Three clinicians independently rated CVMS on 1380 lateral cephalograms, resulting in the creation of five datasets: two consensus-based datasets (Complete Agreement and Majority Voting), and three datasets based on a single rater's evaluations. Additionally, landmarks annotation of the second to fourth cervical vertebrae and patients' information underwent a feature selection process. These datasets were used to train various ML models and identify the top-performing model for each dataset. These models were subsequently tested on their generalization capabilities. Features that considered significant in the consensus-based datasets were consistent with a CVMS guideline. The Support Vector Machine model on the Complete Agreement dataset achieved the highest accuracy (77.4%), followed by the Multi-Layer Perceptron model on the Majority Voting dataset (69.6%). Models from individual ratings showed lower accuracies (60.4-67.9%). The consensus-based training models also exhibited lower coefficient of variation (CV), indicating superior generalization capability compared to models from single raters. ML models trained on consensus-based datasets for CVMS classification exhibited the highest accuracy, with significant features consistent with the original CVMS guidelines. These models also showed robust generalization capabilities, underscoring the importance of dataset quality.

Identifiants

pubmed: 39279025
doi: 10.1186/s40510-024-00535-1
pii: 10.1186/s40510-024-00535-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

35

Informations de copyright

© 2024. The Author(s).

Références

Proffit WR. The timing of early treatment: an overview. Am J Orthod Dentofac Orthop. 2006;129(4 Suppl):S47–9.
doi: 10.1016/j.ajodo.2005.09.014
Hsieh TJ, Pinskaya Y, Roberts WE. Assessment of orthodontic treatment outcomes: early treatment versus late treatment. Angle Orthod. 2005;75(2):162–70.
pubmed: 15825777
Fleming PS. Timing orthodontic treatment: early or late? Aust Dent J. 2017;62(Suppl 1):11–9.
pubmed: 28297091 doi: 10.1111/adj.12474
Fishman LS. Radiographic evaluation of skeletal maturation: a clinically oriented method based on hand-wrist films. Angle Orthod. 1982;52(2):88–112.
pubmed: 6980608
Isaacson KG, Isaacson KG, British Orthodontic S. Guidelines for the use of radiographs in clinical orthodontics. 4th ed. London: British Orthodontic Society; 2015. p. 28.
Dg L. Skeletal age assessment utilizing cervical vertebrae. Pittsburgh: The University of Pittsburgh; 1972.
Hassel B, Farman AG. Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop. 1995;107(1):58–66.
doi: 10.1016/S0889-5406(95)70157-5
Pancherz H, Szyska M. Analyse der Halswirbelkörper statt der Handknochen zur Bestimmung der skelettalen und somatischen Reife—Eine Reliabilitäts- und Validitätsuntersuchung. Inf Orthod Kieferorthop. 2000;32.
O’Reilly MT, Yanniello GJ. Mandibular growth changes and maturation of cervical vertebrae–a longitudinal cephalometric study. Angle Orthod. 1988;58(2):179–84.
pubmed: 3164596
Franchi L, Baccetti T, McNamara JA Jr. Mandibular growth as related to cervical vertebral maturation and body height. Am J Orthod Dentofac Orthop. 2000;118(3):335–40.
doi: 10.1067/mod.2000.107009
Baccetti T, Franchi L, McNamara JA Jr. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002;72(4):316–23.
pubmed: 12169031
Baccetti T, Franchi L, McNamara JA. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod. 2005;11(3):119–29.
doi: 10.1053/j.sodo.2005.04.005
McNamara JA Jr, Franchi L. The cervical vertebral maturation method: a user’s guide. Angle Orthod. 2018;88(2):133–43.
pubmed: 29337631 pmcid: 8312535 doi: 10.2319/111517-787.1
Wong RW, Alkhal HA, Rabie AB. Use of cervical vertebral maturation to determine skeletal age. Am J Orthod Dentofac Orthop. 2009;136(4):484.e1-6 (discussion-5).
doi: 10.1016/j.ajodo.2007.08.033
Gabriel DB, Southard KA, Qian F, Marshall SD, Franciscus RG, Southard TE. Cervical vertebrae maturation method: poor reproducibility. Am J Orthod Dentofac Orthop. 2009;136(4):478.e1-7 (discussion-80).
doi: 10.1016/j.ajodo.2007.08.028
Predko-Engel A, Kaminek M, Langova K, Kowalski P, Fudalej PS. Reliability of the cervical vertebrae maturation (CVM) method. Bratisl Lek. 2015;116(4):222–6.
Shimizu Y, Tanikawa C, Kajiwara T, Nagahara H, Yamashiro T. The validation of orthodontic artificial intelligence systems that perform orthodontic diagnoses and treatment planning. Eur J Orthod. 2022;44(4):436–44.
pubmed: 35050343 doi: 10.1093/ejo/cjab083
Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofac Orthop. 2016;149(1):127–33.
doi: 10.1016/j.ajodo.2015.07.030
Yu JH, Kim JH, Liu J, Mangal U, Ahn HK, Cha JY. Reliability and time-based efficiency of artificial intelligence-based automatic digital model analysis system. Eur J Orthod. 2023;45(6):712–21.
pubmed: 37418746 doi: 10.1093/ejo/cjad032
Santiago RC, Cunha AR, Júnior GC, Fernandes N, Campos MJ, Costa LF, et al. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation–a pilot study. Dentomaxillofac Radiol. 2014;43(2):20130238.
pubmed: 24319125 pmcid: 4064620 doi: 10.1259/dmfr.20130238
Kök H, Acilar AM, İzgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019;20(1):41.
pubmed: 31728776 pmcid: 6856254 doi: 10.1186/s40510-019-0295-8
Kök H, İzgi MS, Acılar AM. Evaluation of the artificial neural network and Naive Bayes models trained with vertebra ratios for growth and development determination. Turk J Orthod. 2021;34(1):2–9.
pubmed: 33828872 doi: 10.5152/TurkJOrthod.2020.20059
Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. J Orthod Craniofac Res. 2021;24(S2):76–83.
Amasya H, Cesur E, Yıldırım D, Orhan K. Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis. Am J Orthod Dentofac Orthop. 2020;158(6):e173–9.
doi: 10.1016/j.ajodo.2020.08.014
Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol. 2020;49(5):20190441.
pubmed: 32105499 pmcid: 7333473 doi: 10.1259/dmfr.20190441
Makaremi M, Lacaule C, Mohammad-Djafari A. Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography. Entropy. 2019;21(12):1222.
pmcid: 7514567 doi: 10.3390/e21121222
Seo H, Hwang J, Jeong T, Shin J. Comparison of deep learning models for cervical vertebral maturation stage classification on lateral cephalometric radiographs. J Clin Med. 2021;10(16):3591.
pubmed: 34441887 pmcid: 8397111 doi: 10.3390/jcm10163591
Kim E-G, Oh I-S, So J-E, Kang J, Le VNT, Tak M-K, et al. Estimating cervical vertebral maturation with a lateral cephalogram using the convolutional neural network. J Clin Med. 2021;10(22):5400.
pubmed: 34830682 pmcid: 8620598 doi: 10.3390/jcm10225400
Mohammad-Rahimi H, Motamadian SR, Nadimi M, Hassanzadeh-Samani S, Minabi MAS, Mahmoudinia E, et al. Deep learning for the classification of cervical maturation degree and pubertal growth spurts: a pilot study. Korean J Orthod. 2022;52(2):112–22.
pubmed: 35321950 pmcid: 8964471 doi: 10.4041/kjod.2022.52.2.112
Atici SF, Ansari R, Allareddy V, Suhaym O, Cetin AE, Elnagar MH. Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters. PLoS ONE. 2022;17(7):e0269198.
pubmed: 35776715 pmcid: 9249196 doi: 10.1371/journal.pone.0269198
Zhou J, Zhou H, Pu L, Gao Y, Tang Z, Yang Y, et al. Development of an artificial intelligence system for the automatic evaluation of cervical vertebral maturation status. Diagnostics. 2021;11(12):2200.
pubmed: 34943436 pmcid: 8700528 doi: 10.3390/diagnostics11122200
Wang S, Huang L, Gao A, Ge J, Zhang T, Feng H, et al. Machine/deep learning for software engineering: a systematic literature review. IEEE Trans Softw Eng. 2023;49(3):1188–231.
doi: 10.1109/TSE.2022.3173346
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
pubmed: 26017442 doi: 10.1038/nature14539
Mathew R, Palatinus S, Padala S, Alshehri A, Awadh W, Bhandi S, et al. Neural networks for classification of cervical vertebrae maturation: a systematic review. Angle Orthod. 2022;92(6):796–804.
pubmed: 36069934 pmcid: 9598845 doi: 10.2319/031022-210.1
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. machine learning for medical imaging. Radiographics. 2017;37(2):505–15.
pubmed: 28212054 doi: 10.1148/rg.2017160130
Remeseiro B, Bolon-Canedo V. A review of feature selection methods in medical applications. Comput Biol Med. 2019;112:103375.
pubmed: 31382212 doi: 10.1016/j.compbiomed.2019.103375
Priestley M, Od’onnell F, Simperl E. A survey of data quality requirements that matter in ML development pipelines. J Data Inf Qual. 2023;15(2):11.
Ramezan CA, Warner TA, Maxwell AE, Price BS. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens. 2021;13(3):368.
doi: 10.3390/rs13030368
Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168:022022.
doi: 10.1088/1742-6596/1168/2/022022
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Elgeldawi E, Sayed A, Galal AR, Zaki AM. Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics. 2021;8(4):79.
doi: 10.3390/informatics8040079
Brown CE. Coefficient of variation. In: Brown CE, editor. Applied multivariate statistics in geohydrology and related sciences. Berlin, Heidelberg: Springer; 1998. p. 155–7.
doi: 10.1007/978-3-642-80328-4_13
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276–82.
doi: 10.11613/BM.2012.031
Santiago RC, de Miranda Costa LF, Vitral RW, Fraga MR, Bolognese AM, Maia LC. Cervical vertebral maturation as a biologic indicator of skeletal maturity. Angle Orthod. 2012;82(6):1123–31.
pubmed: 22417653 pmcid: 8813133 doi: 10.2319/103111-673.1
Rainey B-J, Burnside G, Harrison JE. Reliability of cervical vertebral maturation staging. Am J Orthod Dentofac Orthop. 2016;150(1):98–104.
doi: 10.1016/j.ajodo.2015.12.013
Zhao XG, Lin J, Jiang JH, Wang Q, Ng SH. Validity and reliability of a method for assessment of cervical vertebral maturation. Angle Orthod. 2012;82(2):229–34.
pubmed: 21875315 doi: 10.2319/051511-333.1
Schoretsaniti L, Mitsea A, Karayianni K, Sifakakis I. Cervical vertebral maturation method: reproducibility and efficiency of chronological age estimation. Appl Sci. 2021;11(7):3160.
doi: 10.3390/app11073160
Al-Shayea EI. A survey of orthodontists’ perspectives on the timing of treatment: a pilot study. J Orthod Sci. 2014;3(4):118–24.
pubmed: 25426455 pmcid: 4238079 doi: 10.4103/2278-0203.143232
Makrygiannakis MA, Giannakopoulos K, Kaklamanos EG. Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing. Eur J Orthod. 2024.
Montasser MA, Viana G, Evans CA. Racial and sex differences in timing of the cervical vertebrae maturation stages. Am J Orthod Dentofac Orthop. 2017;151(4):744–9.
doi: 10.1016/j.ajodo.2016.09.019

Auteurs

Potjanee Kanchanapiboon (P)

Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Siriraj, Bangkok Noi, Bangkok, 10700, Thailand.

Pitipat Tunksook (P)

Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.

Prinya Tunksook (P)

Private Practice, Bangkok, Thailand.

Panrasee Ritthipravat (P)

Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, 999 Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.

Supatchai Boonpratham (S)

Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.

Yodhathai Satravaha (Y)

Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.

Chaiyapol Chaweewannakorn (C)

Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.

Supakit Peanchitlertkajorn (S)

Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand. supakit.pea@mahidol.ac.th.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH