Cranial and spinal computed tomography (CT) angiography with photon-counting detector CT: comparison with angiographic and operative findings.

CT angiography Energy-integrating detector CT Neuroimaging Photon-counting detector CT Spine

Journal

Japanese journal of radiology
ISSN: 1867-108X
Titre abrégé: Jpn J Radiol
Pays: Japan
ID NLM: 101490689

Informations de publication

Date de publication:
16 Sep 2024
Historique:
received: 27 06 2024
accepted: 08 09 2024
medline: 17 9 2024
pubmed: 17 9 2024
entrez: 16 9 2024
Statut: aheadofprint

Résumé

The clinical imaging features of photon-counting detector (PCD) computed tomography (CT) are mainly known as dose reduction, improvement of spatial resolution, and reduction of artifacts compared to energy-integrating detector CT (EID-CT). The utility of cranial and spinal PCD-CT and PCD-CT angiography (CTA) has been previously reported. CTA is a widely used technique for noninvasive evaluation. Cranial CTA is important in brain tumors, especially glioblastoma; it evaluates whether the tumor is highly vascularized prior to an operation and helps in the diagnosis and assessment of bleeding risk. Spinal CTA has an important role in the estimation of feeders and drainers prior to selective angiography in the cases of spinal epidural arteriovenous fistulas and spinal tumors, especially in hemangioblastoma. So far, EID-CTA is commonly performed in an adjunctive role prior to selective angiography; PCD-CTA with high spatial resolution can be an alternative to selective angiography. In the cases of cerebral aneurysms, flow diverters are important tools for the treatment of intracranial aneurysms, and postoperative evaluation with cone beam CT with angiography using diluted contrast media is performed to evaluate stent adhesion and in-stent thrombosis. If CTA can replace selective angiography, it will be less invasive for the patient. In this review, we present representative cases with PCD-CT. We also show how well the cranial and spinal PCD-CTA approaches the accuracy of angiographic and intraoperative findings.

Identifiants

pubmed: 39283532
doi: 10.1007/s11604-024-01661-w
pii: 10.1007/s11604-024-01661-w
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Flohr T, Schmidt B. Technical basics and clinical benefits of photon-counting CT. Investig Radiol. 2023;58:441–50.
doi: 10.1097/RLI.0000000000000980
Kappler S, Henning A, Kreisler B, Schoeck F. Photon-counting CT at elevated X-ray tube currents: contrast stability, image noise and multi-energy performance. Proc SPIE Int Soc Opt Eng. 2014;90331:90331C.
Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrast-enhanced photon-counting, CT: first human experience. Radiology. 2016;279:239–45.
doi: 10.1148/radiol.2016152601 pubmed: 26840654
Symons R, Pourmorteza A, Sandfort V, Ahlman MA, Cropper T, Mallek M, et al. Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology. 2017;285:980–9.
doi: 10.1148/radiol.2017162587 pubmed: 28753389
Ferda J, Vendiš T, Flohr T, Schmidt B, Henning A, Ulzheimer S, et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. Eur J Radiol. 2021;137: 109614.
doi: 10.1016/j.ejrad.2021.109614 pubmed: 33657475
McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, et al. Clinical applications of photon counting detector CT. Eur Radiol. 2023;33:5309–20.
doi: 10.1007/s00330-023-09596-y pubmed: 37020069 pmcid: 10330165
McCollough CH, Rajendran K, Leng S, Yu L, Fletcher JG, Stierstorfer K, et al. The technical development of photon-counting detector CT. Eur Radiol. 2023;33:5321–30.
doi: 10.1007/s00330-023-09545-9 pubmed: 37014409 pmcid: 10330290
Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol. 2023;41:266–82.
pubmed: 36255601
Symons R, Reich DS, Bagheri M, Cork TE, Krauss B, Ulzheimer S, et al. Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results. Investig Radiol. 2018;53:135–42.
doi: 10.1097/RLI.0000000000000418
Pourmorteza A, Symons R, Reich DS, Bagheri M, Cork TE, Kappler S, et al. Photon-counting CT of the brain: in vivo human results and image-quality assessment. AJNR Am J Neuroradiol. 2017;38:2257–63.
doi: 10.3174/ajnr.A5402 pubmed: 28982793 pmcid: 7963753
Abel F, Schubert T, Winklhofer S. Advanced neuroimaging with photon-counting detector CT. Investig Radiol. 2023;58:472–81.
doi: 10.1097/RLI.0000000000000984
Marth AA, Marcus RP, Feuerriegel GC, Nanz D, Sutter R. Photon-counting detector CT versus energy-integrating detector CT of the lumbar spine: comparison of radiation dose and image quality. AJR Am J Roentgenol. 2024;222: e2329950.
doi: 10.2214/AJR.23.29950 pubmed: 37646386
Al-Mufti F, Amuluru K, Gandhi CD, Prestigiacomo CJ. Flow diversion for intracranial aneurysm management: a new standard of care. Neurotherapeutics. 2016;13:582–9.
doi: 10.1007/s13311-016-0436-4 pubmed: 27160270 pmcid: 4965406
Batur H, Lynch J, Sayin B, Derakhshani S, Akmangit I, Daglioglu E, et al. Utility of flow diverters in treatment of acutely ruptured uncoilable aneurysms of the posterior circulation of the brain. Jpn J Radiol. 2023;41:889–99.
doi: 10.1007/s11604-023-01409-y pubmed: 36920731
Patel NV, Gounis MJ, Wakhloo AK, Noordhoek N, Blijd J, Babic D, et al. Contrast-enhanced angiographic cone-beam CT of cerebrovascular stents: experimental optimization and clinical application. AJNR Am J Neuroradiol. 2011;32:137–44.
doi: 10.3174/ajnr.A2239 pubmed: 20966059 pmcid: 7964932
Rangel-Castilla L, Holman PJ, Krishna C, Trask TW, Klucznik RP, Diaz OM. Spinal extradural arteriovenous fistulas: a clinical and radiological description of different types and their novel treatment with Onyx. J Neurosurg Spine. 2011;15:541–9.
doi: 10.3171/2011.6.SPINE10695 pubmed: 21800954
Takai K, Taniguchi M. Comparative analysis of spinal extradural arteriovenous fistulas with or without intradural venous drainage: a systematic literature review. Neurosurg Focus. 2012;32:E8.
doi: 10.3171/2012.2.FOCUS1216 pubmed: 22537134
Byun JS, Tsang ACO, Hilditch CA, Nicholson P, Fang YB, Krings T, et al. Presentation and outcomes of patients with thoracic and lumbosacral spinal epidural arteriovenous fistulas: a systematic review and meta-analysis. J Neurointerv Surg. 2019;11:95–8.
doi: 10.1136/neurintsurg-2018-014203 pubmed: 30166334
Kiyosue H, Matsumaru Y, Niimi Y, Takai K, Ishiguro T, Hiramatsu M, et al. Angiographic and clinical characteristics of thoracolumbar spinal epidural and dural arteriovenous fistulas. Stroke. 2017;48:3215–22.
doi: 10.1161/STROKEAHA.117.019131 pubmed: 29114089 pmcid: 5704665
Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44:442–7.
doi: 10.1161/STROKEAHA.112.678151 pubmed: 23321438
Chalouhi N, Tjoumakaris SI, Gonzalez LF, Hasan D, Pema PJ, Gould G, et al. Spontaneous delayed migration/shortening of the pipeline embolization device: report of 5 cases. AJNR Am J Neuroradiol. 2013;34:2326–30.
doi: 10.3174/ajnr.A3632 pubmed: 23811979 pmcid: 7965201
Baker KB, Moran CJ, Wippold FJ, Smirniotopoulos JG, Rodriguez FJ, Meyers SP, et al. MR imaging of spinal hemangioblastoma. AJR Am J Roentgenol. 2000;174:377–82.
doi: 10.2214/ajr.174.2.1740377 pubmed: 10658709
Chu BC, Terae S, Hida K, Furukawa M, Abe S, Miyasaka K. MR findings in spinal hemangioblastoma: correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol. 2001;22:206–17.
pubmed: 11158911 pmcid: 7975549
Tsuchiya K, Gomyo M, Katase S, Hiraoka S, Tateishi H. Magnetic resonance bone imaging: applications to vertebral lesions. Jpn J Radiol. 2023;41:1173–85.
doi: 10.1007/s11604-023-01449-4 pubmed: 37209299 pmcid: 10613598
Hirano K, Imagama S, Sato K, Kato F, Yukawa Y, Yoshihara H, et al. Primary spinal cord tumors: review of 678 surgically treated patients in Japan. A multicenter study. Eur Spine J. 2012;21:2019–26.
doi: 10.1007/s00586-012-2345-5 pubmed: 22581192 pmcid: 3463691
Kasukurthi R, Ray WZ, Blackburn SL, Lusis EA, Santiago P. Intramedullary capillary hemangioma of the thoracic spine: case report and review of the literature. Rare Tumors. 2009;1: e10.
doi: 10.4081/rt.2009.e10 pubmed: 21139881 pmcid: 2994437
Li TY, Xu YL, Yang J, Wang J, Wang GH. Primary spinal epidural cavernous hemangioma: clinical features and surgical outcome in 14 cases. J Neurosurg Spine. 2015;22:39–46.
doi: 10.3171/2014.9.SPINE13901 pubmed: 25343406
Lee JW, Cho EY, Hong SH, Chung HW, Kim JH, Chang KH, et al. Spinal epidural hemangiomas: various types of MR imaging features with histopathologic correlation. AJNR Am J Neuroradiol. 2007;28:1242–8.
doi: 10.3174/ajnr.A0563 pubmed: 17698523 pmcid: 7977664
Peng S, McGuire LS, Saman K, Valyi-Nagy T, Mehta AI. Extradural lumbar nerve root and ganglion capillary hemangioma: case report. Spinal Cord Ser Cases. 2021;7:74.
doi: 10.1038/s41394-021-00438-x pubmed: 34400608 pmcid: 8368244
Sanghvi D, Munshi M, Kulkarni B, Kumar A. Dorsal spinal epidural cavernous hemangioma. J Craniovertebr Junction Spine. 2010;1:122–5.
doi: 10.4103/0974-8237.77677 pubmed: 21572634 pmcid: 3075829
Dang DD, Mugge LA, Awan OK, Gong AD, Fanous AA. Spinal meningiomas: A comprehensive review and update on advancements in molecular characterization, diagnostics, surgical approach and technology, and alternative therapies. Cancers (Basel). 2024;16(16):1426.
doi: 10.3390/cancers16071426 pubmed: 38611105
Yeo Y, Park C, Lee JW, Kang Y, Ahn JM, Kang HS, et al. Magnetic resonance imaging spectrum of spinal meningioma. Clin Imaging. 2019;55:100–6.
doi: 10.1016/j.clinimag.2019.02.007 pubmed: 30802771
Mariani L, Schroth G, Wielepp JP, Haldemann A, Seiler RW. Intratumoral arteriovenous shunting in malignant gliomas. Neurosurgery. 2001;48:353–7.
pubmed: 11220379

Auteurs

Fumiyo Higaki (F)

Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan. fumiyo.higaki@okayama-u.ac.jp.

Masafumi Hiramatsu (M)

Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Takao Yasuhara (T)

Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Susumu Sasada (S)

Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Yoshihiro Otani (Y)

Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Jun Haruma (J)

Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Tomohiro Inoue (T)

Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Yusuke Morimitsu (Y)

Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Noriaki Akagi (N)

Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Yusuke Matsui (Y)

Department of Radiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Toshihiro Iguchi (T)

Department of Radiological Technology, Faculty of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Takao Hiraki (T)

Department of Radiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.

Classifications MeSH