Human papillomavirus infection of the fallopian tube as a potential risk factor for epithelial ovarian cancer.
Humans
Female
Papillomavirus Infections
/ virology
Risk Factors
Carcinoma, Ovarian Epithelial
/ virology
Middle Aged
Fallopian Tubes
/ virology
Adult
Aged
Human papillomavirus 16
/ genetics
Ovarian Neoplasms
/ virology
Herpesvirus 4, Human
/ isolation & purification
Cytomegalovirus
/ isolation & purification
DNA, Viral
/ genetics
Epithelial ovarian cancer
Fallopian tube
Herpesvirus
High-grade serous ovarian carcinoma
Papillomavirus
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 09 2024
16 09 2024
Historique:
received:
19
04
2024
accepted:
10
09
2024
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
16
9
2024
Statut:
epublish
Résumé
Human papillomaviruses (HPVs) and herpesviruses are detected in patients with epithelial ovarian cancer (EOC). We sought to analyze the prevalence of HPV's 16 and 18, cytomegalovirus (CMV), and Epstein-Barr virus (EBV) DNA in peripheral blood, ovarian, and fallopian tube (FT) tissue samples collected from 97 EOC patients, including 71 cases of high-grade serous ovarian carcinoma (HGSOC), and from 60 women with other tumors or non-neoplastic gynecological diseases. DNA isolates were analyzed by PCR methods, including droplet digital PCR. The results demonstrate that (1) HPV16 DNA has been detected in one-third of the FT and tumor samples from EOCs; (2) the prevalence and quantity of HPV16 DNA were significantly higher in FT samples from HGSOCs, non-HGSOCs, and ovarian metastases than in those from non-neoplastic diseases; (3) CMV and EBV have been detected in approximately one-seventh of EOC samples. The results suggest that HPV16 might be a potential risk factor for EOC development.
Identifiants
pubmed: 39284893
doi: 10.1038/s41598-024-72814-0
pii: 10.1038/s41598-024-72814-0
doi:
Substances chimiques
DNA, Viral
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21602Subventions
Organisme : Narodowe Centrum Nauki
ID : 2019/33/B/NZ7/02872
Informations de copyright
© 2024. The Author(s).
Références
Sung, H. et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71, 209–249 (2021).
pubmed: 33538338
doi: 10.3322/caac.21660
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin.73, 17–48 (2023).
pubmed: 36633525
doi: 10.3322/caac.21763
Oliveira, D. V. N. P. et al. Gene expression profile association with poor prognosis in epithelial ovarian cancer patients. Sci. Rep.11, 5438 (2021).
pubmed: 33686173
pmcid: 7940404
doi: 10.1038/s41598-021-84953-9
McCluggage, W. G. Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology43, 420–432 (2011).
pubmed: 21716157
doi: 10.1097/PAT.0b013e328348a6e7
Kurman, R. J. & Shih, I. M. Pathogenesis of ovarian Cancer: Lessons from morphology and Molecular Biology and their clinical implications. Int. J. Gynecol. Pathol. PAP (2008).
Yousefi, M. et al. Current insights into the metastasis of epithelial ovarian cancer—Hopes and hurdles. Cell. Oncol.43, 515–538 (2020).
doi: 10.1007/s13402-020-00513-9
Colvin, E. K. & Howell, V. M. Why the dual origins of high grade serous ovarian cancer matter. Nat. Commun.11, 1200 (2020).
pubmed: 32139687
pmcid: 7058006
doi: 10.1038/s41467-020-15089-z
Jarboe, E. et al. Serous carcinogenesis in the fallopian tube: A descriptive classification. Int. J. Gynecol. Pathol.27, 1–9 (2008).
pubmed: 18156967
doi: 10.1097/pgp.0b013e31814b191f
Labidi-Galy, S. I. et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun.8, 1093 (2017).
pubmed: 29061967
pmcid: 5653668
doi: 10.1038/s41467-017-00962-1
Gilks, C. B. et al. Incidental Nonuterine High-grade Serous carcinomas arise in the fallopian tube in most cases: Further evidence for the Tubal origin of high-grade Serous Carcinomas. Am. J. Surg. Pathol.39, 357–364 (2015).
pubmed: 25517954
doi: 10.1097/PAS.0000000000000353
Zhang, S. et al. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma. Nat. Commun.10, 5367 (2019).
pubmed: 31772167
pmcid: 6879755
doi: 10.1038/s41467-019-13116-2
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature474, 609–615 (2011).
pmcid: 3163504
doi: 10.1038/nature10166
Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast Cancer for BRCA1 and BRCA2 mutation carriers. JAMA317, 2402 (2017).
pubmed: 28632866
doi: 10.1001/jama.2017.7112
Uboveja, A. & Aird, K. M. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. BioEssays46, 2300166 (2024).
doi: 10.1002/bies.202300166
Webb, P. M. & Jordan, S. J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol.21, 389–400 (2024).
pubmed: 38548868
doi: 10.1038/s41571-024-00881-3
Nené, N. R. et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. Lancet Oncol.20, 1171–1182 (2019).
pubmed: 31300207
doi: 10.1016/S1470-2045(19)30340-7
Steinbach, A. & Riemer, A. B. Immune evasion mechanisms of human papillomavirus: An update. Int. J. Cancer142, 224–229 (2018).
pubmed: 28865151
doi: 10.1002/ijc.31027
Wang, X., Zeng, Y., Huang, X. & Zhang, Y. Prevalence and genotype distribution of human papillomavirus in Invasive Cervical Cancer, Cervical Intraepithelial Neoplasia, and Asymptomatic women in Southeast China. Biomed. Res. Int.2018, 1–10 (2018).
Sundström, K. et al. Prospective study of HPV16 viral load and risk of in situ and invasive squamous cervical Cancer. Cancer Epidemiol. Biomarkers Prev.22, 150–158 (2013).
pubmed: 23155137
doi: 10.1158/1055-9965.EPI-12-0953-T
Bilyk, O. O., Pande, N. T., Pejovic, T. & Buchinska, L. G. The frequency of human papilloma virus types 16, 18 in upper genital tract of women at high risk of developing ovarian cancer. Exp. Oncol.36, 121–124 (2014).
pubmed: 24980768
Paradowska, E., Jabłońska, A., Studzińska, M., Wilczyński, M. & Wilczyński, J. R. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci. Rep.9, 19935 (2019).
pubmed: 31882737
pmcid: 6934444
doi: 10.1038/s41598-019-56448-1
Kuscu, E., Ozdemir, B. H., Erkanli, S. & Haberal, A. HPV and p53 expression in epithelial ovarian carcinoma. Eur. J. Gynaecol. Oncol.26, 642–645 (2005).
pubmed: 16398227
Atalay, F. et al. Detection of human papillomavirus DNA and genotyping in patients with epithelial ovarian carcinoma. J. Obstet. Gynaecol. Res.33, 823–828 (2007).
pubmed: 18001449
doi: 10.1111/j.1447-0756.2007.00663.x
Al-Shabanah, O. A. et al. Human papillomavirus genotyping and integration in ovarian cancer Saudi patients. Virol. J.10, 343 (2013).
pubmed: 24252426
pmcid: 3842654
doi: 10.1186/1743-422X-10-343
Lai, C. H. et al. Human papillomavirus in Benign and malignant ovarian and endometrial tissues. Int. J. Gynecol. Pathol.11, 210–215 (1992).
pubmed: 1328079
doi: 10.1097/00004347-199207000-00007
Wu, Q. J. et al. Detection of human papillomavirus-16 in ovarian malignancy. Br. J. Cancer89, 672–675 (2003).
pubmed: 12915876
pmcid: 2376933
doi: 10.1038/sj.bjc.6601172
Hassan, Z., Hafez, M. M., Kamel, M. M. & Zekri, N. A. R. Human Papillomavirus Genotypes and Methylation of CADM1, PAX1, MAL and ADCYAP1 Genes in Epithelial Ovarian Cancer Patients. APJCP18 (2017).
Malisic, E., Jankovic, R. & Jakovljevic, K. Detection and genotyping of human papillomaviruses and their role in the development of ovarian carcinomas. Arch. Gynecol. Obstet.286, 723–728 (2012).
pubmed: 22569714
doi: 10.1007/s00404-012-2367-6
Dadashi, M. et al. Detection of human papilloma virus type 16 in epithelial ovarian tumors samples. Arch. Clin. Infect. Dis.12, (2016).
Zhang, P. P. et al. Possible epithelial ovarian cancer association with HPV18 or HPV33 infection. Asian Pac. J. Cancer Prev.17, 2959–2964 (2016).
pubmed: 27356718
Roos, P., Orlando, P. A., Fagerstrom, R. M. & Pepper, J. W. In North America, some ovarian cancers express the oncogenes of preventable human papillomavirus HPV-18. Sci. Rep.5, 8645 (2015).
pubmed: 25721614
pmcid: 4342572
doi: 10.1038/srep08645
Cherif, S. et al. Prevalence of human papillomavirus detection in ovarian cancer: A meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis.40, 1791–1802 (2021).
pubmed: 34086102
pmcid: 8346400
doi: 10.1007/s10096-021-04282-7
Pathak, S., Wilczyński, J. R. & Paradowska, E. Factors in Oncogenesis: Viral infections in Ovarian Cancer. Cancers12, 561 (2020).
pubmed: 32121320
pmcid: 7139377
doi: 10.3390/cancers12030561
Haręża, D. A., Wilczyński, J. R. & Paradowska, E. Human papillomaviruses as Infectious agents in Gynecological cancers. Oncogenic properties of viral proteins. IJMS23, 1818 (2022).
pubmed: 35163748
pmcid: 8836588
doi: 10.3390/ijms23031818
Shanmughapriya, S. et al. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur. J. Clin. Microbiol. Infect. Dis.31, 2311–2317 (2012).
pubmed: 22402815
doi: 10.1007/s10096-012-1570-5
Idahl, A. et al. Chlamydia trachomatis, Mycoplasma genitalium, Neisseria gonorrhoeae, human papillomavirus, and polyomavirus are not detectable in human tissue with epithelial ovarian cancer, borderline tumor, or benign conditions. Am. J. Obstet. Gynecol.202, 71e1–71e6 (2010).
doi: 10.1016/j.ajog.2009.07.042
Ingerslev, K. et al. High-risk HPV is not associated with epithelial ovarian cancer in a caucasian population. Infect. Agents Cancer11, 39 (2016).
doi: 10.1186/s13027-016-0087-4
Anttila, M., Syrjänen, S., Ji, H., Saarikoski, S. & Syrjänen, K. Failure to demonstrate human papillomavirus DNA in epithelial ovarian Cancer by general primer PCR. Gynecol. Oncol.72, 337–341 (1999).
pubmed: 10053104
doi: 10.1006/gyno.1998.5264
Ingerslev, K. et al. The prevalence of EBV and CMV DNA in epithelial ovarian cancer. Infect. Agents Cancer14, 7 (2019).
doi: 10.1186/s13027-019-0223-z
Grabarek, B. O. et al. Detection and genotyping of human papillomavirus (HPV16/18), Epstein–Barr Virus (EBV), and human cytomegalovirus (HCMV) in endometrial endometroid and ovarian cancers. Pathogens12, 397 (2023).
pubmed: 36986319
pmcid: 10053580
doi: 10.3390/pathogens12030397
Rådestad, A. F. et al. Impact of human cytomegalovirus infection and its Immune response on survival of patients with ovarian Cancer. Transl. Oncol.11, 1292–1300 (2018).
pubmed: 30172882
pmcid: 6121833
doi: 10.1016/j.tranon.2018.08.003
Carlson, J. W., Rådestad, A. F., Söderberg-Naucler, C. & Rahbar, A. Human cytomegalovirus in high grade serous ovarian cancer possible implications for patients survival. Medicine97, e9685 (2018).
pubmed: 29369188
pmcid: 5794372
doi: 10.1097/MD.0000000000009685
Stevenson, A. et al. Droplet digital PCR quantification suggests that higher viral load correlates with improved survival in HPV-positive oropharyngeal tumours. J. Clin. Virol.129, 104505 (2020).
pubmed: 32604039
doi: 10.1016/j.jcv.2020.104505
McFarlane, M., MacDonald, A. I., Stevenson, A. & Graham, S. V. Human papillomavirus 16 Oncoprotein expression is controlled by the Cellular splicing factor SRSF2 (SC35). J. Virol.89, 5276–5287 (2015).
pubmed: 25717103
pmcid: 4442513
doi: 10.1128/JVI.03434-14
Hanna, G. J. et al. Plasma HPV cell-free DNA monitoring in advanced HPV-associated oropharyngeal cancer. Ann. Oncol.29, 1980–1986 (2018).
pubmed: 30010779
doi: 10.1093/annonc/mdy251
Shuto, T. et al. Establishment of a screening method for Epstein–Barr Virus-Associated gastric carcinoma by Droplet Digital PCR. Microorganisms7, 628 (2019).
pubmed: 31795435
pmcid: 6956032
doi: 10.3390/microorganisms7120628
Hassan-Walker, A. F., Mattes, F. M., Griffiths, P. D. & Emery, V. C. Quantity of cytomegalovirus DNA in different leukocyte populations during active infection in vivo and the presence of gB and UL18 transcripts. J. Med. Virol.64, 283–289 (2001).
pubmed: 11424116
doi: 10.1002/jmv.1048
Paradowska, E. et al. Detection of cytomegalovirus in human placental cells by polymerase chain reaction. Apmis114, 764–771 (2006).
pubmed: 17078856
doi: 10.1111/j.1600-0463.2006.apm_31.x
Nakamura, M., Obata, T., Daikoku, T. & Fujiwara, H. The Association and significance of p53 in gynecologic cancers: The potential of targeted therapy. IJMS20, 5482 (2019).
pubmed: 31689961
pmcid: 6862296
doi: 10.3390/ijms20215482
Corney, D. C., Flesken-Nikitin, A., Choi, J. & Nikitin, A. Y. Role of p53 and rb in Ovarian Cancer. In Ovarian Cancer, Vol. 622 (eds Coukos, G., Berchuck, A. & Ozols, R.) 99–117 (Springer New York, New York, 2008).
doi: 10.1007/978-0-387-68969-2_9
Rotondo, J. C. et al. Simultaneous detection and viral DNA load quantification of different human papillomavirus types in clinical specimens by the high analytical droplet digital PCR method. Front. Microbiol.11, 591452 (2020).
pubmed: 33329471
pmcid: 7710522
doi: 10.3389/fmicb.2020.591452
Rosa, M. I. et al. The prevalence of human papillomavirus in ovarian Cancer: A systematic review. Int. J. Gynecol. Cancer23, 437–441 (2013).
pubmed: 23354370
doi: 10.1097/IGC.0b013e318280f3e0
Svahn, M. F., Faber, M. T., Christensen, J., Norrild, B. & Kjaer, S. K. Prevalence of human papillomavirus in epithelial ovarian cancer tissue. A meta-analysis of observational studies. Acta Obstet. Gynecol. Scand.93, 6–19 (2014).
pubmed: 24033121
doi: 10.1111/aogs.12254
Yin, M. et al. Detection of human cytomegalovirus in patients with epithelial ovarian cancer and its impacts on survival. Infect. Agents Cancer15, 23 (2020).
doi: 10.1186/s13027-020-00289-5
Vogel, R. I. et al. Prevalence of active cytomegalovirus infection at diagnosis of ovarian cancer and during chemotherapy and subsequent changes in cognitive functioning. BMC Cancer23, 1057 (2023).
pubmed: 37923995
pmcid: 10623703
doi: 10.1186/s12885-023-11566-y
Cox, M., Kartikasari, A. E. R., Gorry, P. R., Flanagan, K. L. & Plebanski, M. Potential impact of human cytomegalovirus infection on immunity to ovarian tumours and cancer progression. Biomedicines9, 351 (2021).
pubmed: 33808294
pmcid: 8065684
doi: 10.3390/biomedicines9040351
Rahbar, A., Pantalone, M. R., Religa, P. & Rådestad, A. F. Söderberg-Naucler, C. evidence of human cytomegalovirus infection and expression of 5‐lipoxygenase in borderline ovarian tumors. J. Med. Virol.93, 4023–4027 (2021).
pubmed: 33174621
doi: 10.1002/jmv.26664
Rasmussen, C. B., Jensen, A., Albieri, V., Andersen, K. K. & Kjaer, S. K. Increased risk of borderline ovarian tumors in women with a history of pelvic inflammatory disease: A nationwide population-based cohort study. Gynecol. Oncol.143, 346–351 (2016).
pubmed: 27549433
doi: 10.1016/j.ygyno.2016.08.318
Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem.83, 8604–8610 (2011).
pubmed: 22035192
pmcid: 3216358
doi: 10.1021/ac202028g
Okodo, M., Okayama, K., Teruya, K. & Sasagawa, T. Uniplex E6/E7 PCR method detecting E6 or E7 genes in 39 human papillomavirus types. J. Med. Virol.90, 981–988 (2018).
pubmed: 29314149
doi: 10.1002/jmv.25017
Paradowska, E. et al. Distribution of UL144, US28 and UL55 genotypes in Polish newborns with congenital cytomegalovirus infections. Eur. J. Clin. Microbiol. Infect. Dis.31, 1335–1345 (2012).
pubmed: 22048843
doi: 10.1007/s10096-011-1447-z
Hassan, R. et al. Epstein-Barr Virus (EBV) detection and typing by PCR: A contribution to diagnostic screening of EBV-positive Burkitt’s lymphoma. Diagn. Pathol.1, 17 (2006).
pubmed: 16893464
pmcid: 1559641
doi: 10.1186/1746-1596-1-17
Wang, Z. et al. Effect of advanced glycosylation end products on apoptosis in human adipose tissue-derived stem cells in vitro. Cell. Biosci.5, 3 (2015).
pubmed: 25973170
pmcid: 4429817
doi: 10.1186/2045-3701-5-3
Van Heetvelde, M. et al. Evaluation of relative quantification of alternatively spliced transcripts using droplet digital PCR. Biomol. Detect. Quantif.13, 40–48 (2017).
pubmed: 29021971
pmcid: 5634819
doi: 10.1016/j.bdq.2017.09.001