Exercise-based cardiac rehabilitation for adults with atrial fibrillation.


Journal

The Cochrane database of systematic reviews
ISSN: 1469-493X
Titre abrégé: Cochrane Database Syst Rev
Pays: England
ID NLM: 100909747

Informations de publication

Date de publication:
17 Sep 2024
Historique:
medline: 17 9 2024
pubmed: 17 9 2024
entrez: 17 9 2024
Statut: epublish

Résumé

Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, disrupts the heart's rhythm through numerous small re-entry circuits in the atrial tissue, leading to irregular atrial contractions. The condition poses significant health risks, including increased stroke risk, heart failure, and reduced quality of life. Given the complexity of AF and its growing incidence globally, exercise-based cardiac rehabilitation (ExCR) may provide additional benefits for people with AF or those undergoing routine treatment for the condition. To assess the benefits and harms of ExCR compared with non-exercise controls for people who currently have AF or who have been treated for AF. We searched the following electronic databases: CENTRAL in the Cochrane Library, MEDLINE Ovid, Embase Ovid, PsycINFO Ovid, Web of Science Core Collection Thomson Reuters, CINAHL EBSCO, LILACS BIREME, and two clinical trial registers on 24 March 2024. We imposed no language restrictions. We included randomised clinical trials (RCTs) that investigated ExCR interventions compared with any type of non-exercise control. We included adults 18 years of age or older with any subtype of AF or those who had received treatment for AF. Five review authors independently screened and extracted data in duplicate. We assessed risk of bias using Cochrane's RoB 1 tool as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We assessed clinical and statistical heterogeneity by visual inspection of the forest plots and by using standard Chi² and I² statistics. We performed meta-analyses using random-effects models for continuous and dichotomised outcomes. We calculated standardised mean differences where different scales were used for the same outcome. We used the GRADE approach to assess the certainty of the evidence. We included 20 RCTs involving a total of 2039 participants with AF. All trials were conducted between 2006 and 2024, with a follow-up period ranging from eight weeks to five years. We assessed the certainty of evidence as moderate to very low. Five trials assessed comprehensive ExCR programmes, which included educational or psychological interventions, or both; the remaining 15 trials compared exercise-only cardiac rehabilitation with controls. The overall risk of bias in the included studies was mixed. Details on random sequence generation, allocation concealment, and use of intention-to-treat analysis were typically poorly reported. Evidence from nine trials (n = 1173) suggested little to no difference in mortality between ExCR and non-exercise controls (risk ratio (RR) 1.06, 95% confidence interval (CI) 0.76 to 1.49; I² = 0%; 101 deaths; low-certainty evidence). Based on evidence from 10 trials (n = 825), ExCR may have little to no effect on SAEs (RR 1.30, 95% CI 0.63 to 2.67; I² = 0%; 28 events; low-certainty evidence). Evidence from four trials (n = 378) showed that ExCR likely reduced AF recurrence (measured via Holter monitoring) compared to controls (RR 0.70, 95% CI 0.56 to 0.88; I² = 2%; moderate-certainty evidence). ExCR may reduce AF symptom severity (mean difference (MD) -1.59, 95% CI -2.98 to -0.20; I² = 61%; n = 600; low-certainty evidence); likely reduces AF symptom burden (MD -1.61, 95% CI -2.76 to -0.45; I² = 0%; n = 317; moderate-certainty evidence); may reduce AF episode frequency (MD -1.29, 95% CI -2.50 to -0.07; I² = 75%; n = 368; low-certainty evidence); and likely reduces AF episode duration (MD -0.58, 95% CI -1.14 to -0.03; I² = 0%; n = 317; moderate-certainty evidence), measured via the AF Severity Scale (AFSS) questionnaire. Moderate-certainty evidence from six trials (n = 504) showed that ExCR likely improved the mental component summary measure in health-related quality of life (HRQoL) of the 36-item Short Form Health Survey (SF-36) (MD 2.66, 95% CI 1.22 to 4.11; I² = 2%), but the effect of ExCR on the physical component summary measure was very uncertain (MD 1.75, 95% CI -0.31 to 3.81; I² = 52%; very low-certainty evidence). ExCR also may improve individual components of HRQoL (general health, vitality, emotional role functioning, and mental health) and exercise capacity (peak oxygen uptake (VO Due to few randomised participants and typically short-term follow-up, the impact of ExCR on all-cause mortality or serious adverse events for people with AF is uncertain. ExCR likely improves AF-specific measures including reduced AF recurrence, symptom burden, and episode duration, as well as the mental components of HRQoL. ExCR may improve AF symptom severity, episode frequency, and VO

Sections du résumé

BACKGROUND BACKGROUND
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, disrupts the heart's rhythm through numerous small re-entry circuits in the atrial tissue, leading to irregular atrial contractions. The condition poses significant health risks, including increased stroke risk, heart failure, and reduced quality of life. Given the complexity of AF and its growing incidence globally, exercise-based cardiac rehabilitation (ExCR) may provide additional benefits for people with AF or those undergoing routine treatment for the condition.
OBJECTIVES OBJECTIVE
To assess the benefits and harms of ExCR compared with non-exercise controls for people who currently have AF or who have been treated for AF.
SEARCH METHODS METHODS
We searched the following electronic databases: CENTRAL in the Cochrane Library, MEDLINE Ovid, Embase Ovid, PsycINFO Ovid, Web of Science Core Collection Thomson Reuters, CINAHL EBSCO, LILACS BIREME, and two clinical trial registers on 24 March 2024. We imposed no language restrictions.
SELECTION CRITERIA METHODS
We included randomised clinical trials (RCTs) that investigated ExCR interventions compared with any type of non-exercise control. We included adults 18 years of age or older with any subtype of AF or those who had received treatment for AF.
DATA COLLECTION AND ANALYSIS METHODS
Five review authors independently screened and extracted data in duplicate. We assessed risk of bias using Cochrane's RoB 1 tool as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We assessed clinical and statistical heterogeneity by visual inspection of the forest plots and by using standard Chi² and I² statistics. We performed meta-analyses using random-effects models for continuous and dichotomised outcomes. We calculated standardised mean differences where different scales were used for the same outcome. We used the GRADE approach to assess the certainty of the evidence.
MAIN RESULTS RESULTS
We included 20 RCTs involving a total of 2039 participants with AF. All trials were conducted between 2006 and 2024, with a follow-up period ranging from eight weeks to five years. We assessed the certainty of evidence as moderate to very low. Five trials assessed comprehensive ExCR programmes, which included educational or psychological interventions, or both; the remaining 15 trials compared exercise-only cardiac rehabilitation with controls. The overall risk of bias in the included studies was mixed. Details on random sequence generation, allocation concealment, and use of intention-to-treat analysis were typically poorly reported. Evidence from nine trials (n = 1173) suggested little to no difference in mortality between ExCR and non-exercise controls (risk ratio (RR) 1.06, 95% confidence interval (CI) 0.76 to 1.49; I² = 0%; 101 deaths; low-certainty evidence). Based on evidence from 10 trials (n = 825), ExCR may have little to no effect on SAEs (RR 1.30, 95% CI 0.63 to 2.67; I² = 0%; 28 events; low-certainty evidence). Evidence from four trials (n = 378) showed that ExCR likely reduced AF recurrence (measured via Holter monitoring) compared to controls (RR 0.70, 95% CI 0.56 to 0.88; I² = 2%; moderate-certainty evidence). ExCR may reduce AF symptom severity (mean difference (MD) -1.59, 95% CI -2.98 to -0.20; I² = 61%; n = 600; low-certainty evidence); likely reduces AF symptom burden (MD -1.61, 95% CI -2.76 to -0.45; I² = 0%; n = 317; moderate-certainty evidence); may reduce AF episode frequency (MD -1.29, 95% CI -2.50 to -0.07; I² = 75%; n = 368; low-certainty evidence); and likely reduces AF episode duration (MD -0.58, 95% CI -1.14 to -0.03; I² = 0%; n = 317; moderate-certainty evidence), measured via the AF Severity Scale (AFSS) questionnaire. Moderate-certainty evidence from six trials (n = 504) showed that ExCR likely improved the mental component summary measure in health-related quality of life (HRQoL) of the 36-item Short Form Health Survey (SF-36) (MD 2.66, 95% CI 1.22 to 4.11; I² = 2%), but the effect of ExCR on the physical component summary measure was very uncertain (MD 1.75, 95% CI -0.31 to 3.81; I² = 52%; very low-certainty evidence). ExCR also may improve individual components of HRQoL (general health, vitality, emotional role functioning, and mental health) and exercise capacity (peak oxygen uptake (VO
AUTHORS' CONCLUSIONS CONCLUSIONS
Due to few randomised participants and typically short-term follow-up, the impact of ExCR on all-cause mortality or serious adverse events for people with AF is uncertain. ExCR likely improves AF-specific measures including reduced AF recurrence, symptom burden, and episode duration, as well as the mental components of HRQoL. ExCR may improve AF symptom severity, episode frequency, and VO

Identifiants

pubmed: 39287086
doi: 10.1002/14651858.CD011197.pub3
doi:

Types de publication

Journal Article Systematic Review Meta-Analysis Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

CD011197

Informations de copyright

Copyright © 2024 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Auteurs

Benjamin Jr Buckley (BJ)

Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University, and Liverpool Heart and Chest Hospital, Liverpool, UK.
Cardiovascular Health Sciences, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpoool, UK.

Linda Long (L)

MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, , University of Glasgow, Glasgow, UK.

Signe S Risom (SS)

Department of Cardiology, Herlev and Gentofte , University Hospital, Copenhagen, Denmark.

Deirdre A Lane (DA)

Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University, and Liverpool Heart and Chest Hospital, Liverpool, UK.
Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK.

Selina K Berg (SK)

Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark.
University of Southern Denmark, Odense, Denmark.
National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.

Christian Gluud (C)

Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, Copenhagen, Denmark.
Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.

Pernille Palm (P)

Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Kirstine L Sibilitz (KL)

Department of Cardiology and Internal Medicine, Amager and Hvidovre University Hospital, Copenhagen, Denmark.

Jesper H Svendsen (JH)

Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark.

Ann-Dorthe Zwisler (AD)

REHPA, The Danish Knowledge Centre for Rehabilitation and Palliative Care, Odense University Hospital, Nyborg, Denmark.

Gregory Yh Lip (GY)

Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University, and Liverpool Heart and Chest Hospital, Liverpool, UK.
Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK.

Lis Neubeck (L)

Centre for Cardiovascular Health, Edinburgh Napier University, Edinburgh, UK.

Rod S Taylor (RS)

National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.
MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH