Carotid artery assessment in dual-source photon-counting CT: impact of low-energy virtual monoenergetic imaging on image quality, vascular contrast and diagnostic assessability.

Carotid arteries Dual-energy CT Photon-counting CT Virtual monoenergetic imaging

Journal

La Radiologia medica
ISSN: 1826-6983
Titre abrégé: Radiol Med
Pays: Italy
ID NLM: 0177625

Informations de publication

Date de publication:
17 Sep 2024
Historique:
received: 26 01 2024
accepted: 12 09 2024
medline: 17 9 2024
pubmed: 17 9 2024
entrez: 17 9 2024
Statut: aheadofprint

Résumé

Preliminary dual-energy CT studies have shown that low-energy virtual monoenergetic (VMI) + reconstructions can provide superior image quality compared to standard 120 kV CTA series. The purpose of this study is to evaluate the impact of low-energy VMI reconstructions on quantitative and qualitative image quality, vascular contrast, and diagnostic assessability of the carotid artery in patients undergoing photon-counting CTA examinations. A total of 122 patients (67 male) who had undergone dual-source photon-counting CTA scans of the carotid artery were retrospectively analyzed in this study. Standard 120 kV CT images and low-keV VMI series from 40 to 100 keV with an interval of 15 keV were reconstructed. Quantitative analyses included the evaluation of vascular CT numbers, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). CT number measurements were performed in the common, external, and internal carotid arteries. Qualitative analyses were performed by three board-certified radiologists independently using five-point scales to evaluate image quality, vascular contrast, and diagnostic assessability of the carotid artery. Mean attenuation, CNR and SNR values were highest in 40 keV VMI reconstructions (HU, 1362.32 ± 457.81; CNR, 33.19 ± 12.86; SNR, 34.37 ± 12.89) followed by 55-keV VMI reconstructions (HU, 736.94 ± 150.09; CNR, 24.49 ± 7.11; SNR, 26.25 ± 7.34); all three mean values at these keV levels were significantly higher compared with the remaining VMI series and standard 120 kV CT series (HU, 154.43 ± 23.69; CNR, 16.34 ± 5.47; SNR, 24.44 ± 7.14) (p < 0.0001). The qualitative analysis showed the highest rating scores for 55 keV VMI reconstructions followed by 40 keV and 70 keV VMI series with a significant difference compared to standard 120 kV CT images series regarding image quality, vascular contrast, and diagnostic assessability of the carotid artery (all comparisons, p < 0.01). Low-keV VMI reconstructions at a level of 40-55 keV significantly improve image quality, vascular contrast, and the diagnostic assessability of the carotid artery compared with standard CT series in photon-counting CTA.

Identifiants

pubmed: 39287697
doi: 10.1007/s11547-024-01889-6
pii: 10.1007/s11547-024-01889-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Rajamani K, Chaturvedi S (2011) Stroke prevention-surgical and interventional approaches to carotid stenosis. Neurotherapeutics 8:503–514. https://doi.org/10.1007/s13311-011-0052-2
pubmed: 21647764 pmcid: 3250270
Lovrencic-Huzjan A, Rundek T, Katsnelson M (2012) Recommendations for management of patients with carotid stenosis. Stroke Res Treat 2012:175869. https://doi.org/10.1155/2012/175869
pubmed: 22645702 pmcid: 3356946
Kadkhodayan Y, Jeck DT, Moran CJ et al (2005) Angioplasty and stenting in carotid dissection with or without associated pseudoaneurysm. AJNR Am J Neuroradiol 26:2328–2335
pubmed: 16219841 pmcid: 7976134
Thanvi B, Munshi SK, Dawson SL, Robinson TG (2005) Carotid and vertebral artery dissection syndromes. Postgrad Med J 81:383–388. https://doi.org/10.1136/pgmj.2003.016774
pubmed: 15937204 pmcid: 1743284
Goddard AJ, Mendelow AD, Birchall D (2001) Computed tomography angiography in the investigation of carotid stenosis. Clin Radiol 56:523–534. https://doi.org/10.1053/crad.2001.0671
pubmed: 11446749
Saba L, Loewe C, Weikert T et al (2023) State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: standardization of scanning protocols and measurements-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol 33:1063–1087. https://doi.org/10.1007/s00330-022-09024-7
pubmed: 36194267
Arendt CT, Czwikla R, Lenga L et al (2020) Improved coronary artery contrast enhancement using noise-optimised virtual monoenergetic imaging from dual-source dual-energy computed tomography. Eur J Radiol 122:108666. https://doi.org/10.1016/j.ejrad.2019.108666
pubmed: 31786506
D’Angelo T, Vizzari G, Lanzafame LRM et al (2023) Spectral CT imaging of prosthetic valve embolization after transcatheter aortic valve implantation. Diagnostics (Basel) 13:678. https://doi.org/10.3390/diagnostics13040678
pubmed: 36832165
Si-Mohamed S, Dupuis N, Tatard-Leitman V et al (2019) Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic intramural hematoma. Eur Radiol 29:6762–6771. https://doi.org/10.1007/s00330-019-06322-5
pubmed: 31264015
Zhang X, Zhang G, Xu L et al (2022) Utilisation of virtual non-contrast images and virtual mono-energetic images acquired from dual-layer spectral CT for renal cell carcinoma: image quality and radiation dose. Insights Imaging 13:12. https://doi.org/10.1186/s13244-021-01146-8
pubmed: 35072807 pmcid: 8787008
D’Angelo T, Cicero G, Mazziotti S et al (2019) Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 92:20180546. https://doi.org/10.1259/bjr.20180546
pubmed: 30919651 pmcid: 6592074
Bucolo GM, D’Angelo T, Yel I et al (2023) Virtual monoenergetic imaging of lower extremities using dual-Energy CT angiography in patients with diabetes mellitus. Diagnostics (Basel) 13:1790. https://doi.org/10.3390/diagnostics13101790
pubmed: 37238274
van der Bie J, van Straten M, Booij R et al (2023) Photon-counting CT: Review of initial clinical results. Eur J Radiol 163:110829. https://doi.org/10.1016/j.ejrad.2023.110829
pubmed: 37080060
Willemink MJ, Persson M, Pourmorteza A et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289:293–312. https://doi.org/10.1148/radiol.2018172656
pubmed: 30179101
Dahal S, Raja AY, Searle E et al (2023) Components of carotid atherosclerotic plaque in spectral photon-counting CT with histopathologic comparison. Eur Radiol 33:1612–1619. https://doi.org/10.1007/s00330-022-09155-x
pubmed: 36205768
Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics 33:159–174. https://doi.org/10.2307/2529310
pubmed: 843571
Lenga L, Czwikla R, Wichmann JL et al (2018) Dual-energy CT in patients with colorectal cancer: Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging. Eur J Radiol 106:184–191. https://doi.org/10.1016/j.ejrad.2018.07.027
pubmed: 30150043
Lenga L, Czwikla R, Wichmann JL et al (2018) Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality. Clin Radiol 73:833 e19-833 e27. https://doi.org/10.1016/j.crad.2018.04.015
pubmed: 29884524
Lenga L, Lange M, Arendt CT et al (2020) Measurement reliability and diagnostic accuracy of virtual monoenergetic dual-energy CT in patients with colorectal liver metastases. Acad Radiol 27:e168–e175. https://doi.org/10.1016/j.acra.2019.09.020
pubmed: 31727567
Lenga L, Lange M, Arendt CT et al (2021) Can Dual-energy CT-based Virtual Monoenergetic Imaging Improve the Assessment of Hypodense Liver Metastases in Patients With Hepatic Steatosis? Acad Radiol 28:769–777. https://doi.org/10.1016/j.acra.2020.03.044
pubmed: 32446765
Martin SS, Kolaneci J, Czwikla R et al (2022) Dual-energy CT for the detection of portal vein thrombosis: improved diagnostic performance using virtual monoenergetic reconstructions. Diagnostics (Basel) 12:1682. https://doi.org/10.3390/diagnostics12071682
pubmed: 35885585
Schneider D, Apfaltrer P, Sudarski S et al (2014) Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol 21:431–436. https://doi.org/10.1016/j.acra.2013.12.006
pubmed: 24594412
Leithner D, Mahmoudi S, Wichmann JL et al (2018) Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: effects on image quality, artefacts and diagnostic performance for the detection of stenosis. Eur J Radiol 99:111–117. https://doi.org/10.1016/j.ejrad.2017.12.024
pubmed: 29362140
Yuan R, Shuman WP, Earls JP et al (2012) Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography–a prospective randomized trial. Radiology 262:290–297. https://doi.org/10.1148/radiol.11110648
pubmed: 22084206
Delesalle MA, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266. https://doi.org/10.1148/radiol.12120195
pubmed: 23319663
Dillinger D, Overhoff D, Booz C et al (2023) Impact of CT photon-counting virtual monoenergetic imaging on visualization of abdominal arterial vessels. Diagnostics (Basel) 13:938. https://doi.org/10.3390/diagnostics13050938
pubmed: 36900082
Sartoretti T, McDermott M, Mergen V et al (2023) Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality. Br J Radiol 96:20220466. https://doi.org/10.1259/bjr.20220466
pubmed: 36633005 pmcid: 9975359
Si-Mohamed S, Bar-Ness D, Sigovan M et al (2018) Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp 2:34. https://doi.org/10.1186/s41747-018-0063-4
pubmed: 30327898 pmcid: 6191405
Apfaltrer P, Sudarski S, Schneider D et al (2014) Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol 83:322–328. https://doi.org/10.1016/j.ejrad.2013.11.005
pubmed: 24361061
Davenport MS, Perazella MA, Yee J et al (2020) Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the american college of radiology and the national kidney foundation. Kidney Med 2:85–93. https://doi.org/10.1016/j.xkme.2020.01.001
pubmed: 33015613 pmcid: 7525144
Weininger M, Barraza JM, Kemper CA et al (2011) Cardiothoracic CT angiography: current contrast medium delivery strategies. AJR Am J Roentgenol 196:W260–W272. https://doi.org/10.2214/AJR.10.5814
pubmed: 21343473
Cademartiri F, Mollet NR, van der Lugt A et al (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665. https://doi.org/10.1148/radiol.2362040468
pubmed: 16040923
Rajendran K, Petersilka M, Henning A et al (2022) First clinical photon-counting detector CT system: technical evaluation. Radiology 303:130–138. https://doi.org/10.1148/radiol.212579
pubmed: 34904876
Phan CM, Yoo AJ, Hirsch JA et al (2012) Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol 33:1088–1094. https://doi.org/10.3174/ajnr.A2909
pubmed: 22268092 pmcid: 8013231
Tijssen MP, Hofman PA, Stadler AA et al (2014) The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol 24:834–840. https://doi.org/10.1007/s00330-013-3073-x
pubmed: 24258277
Graafen D, Muller L, Halfmann M et al (2022) Photon-counting detector CT improves quality of arterial phase abdominal scans: a head-to-head comparison with energy-integrating CT. Eur J Radiol 156:110514. https://doi.org/10.1016/j.ejrad.2022.110514
pubmed: 36108479

Auteurs

Christian Booz (C)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Giuseppe M Bucolo (GM)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.

Tommaso D'Angelo (T)

Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy. tommasodang@gmail.com.
Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. tommasodang@gmail.com.

Silvio Mazziotti (S)

Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.

Ludovica R M Lanzafame (LRM)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.

Ibrahim Yel (I)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Leona S Alizadeh (LS)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany.

Leon D Gruenewald (LD)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Vitali Koch (V)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Simon S Martin (SS)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Mirela Dimitrova (M)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Aynur Goekduman (A)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Thomas J Vogl (TJ)

Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

Hanns L Kaatsch (HL)

Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany.

Daniel Overhoff (D)

Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany.
Department of Radiology and Nuclear Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.

Stephan Waldeck (S)

Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany.
Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.

Classifications MeSH