Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential.
amenorrhea
anovulation
functional hypothalamic amenorrhea
hypogonadotropic hypogonadism
kisspeptin
Journal
Annals of the New York Academy of Sciences
ISSN: 1749-6632
Titre abrégé: Ann N Y Acad Sci
Pays: United States
ID NLM: 7506858
Informations de publication
Date de publication:
17 Sep 2024
17 Sep 2024
Historique:
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
17
9
2024
Statut:
aheadofprint
Résumé
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Institute for Health and Care Research
ID : NIHR Academic Clinical Fellowship Award ACF-2021-2
Organisme : National Institute for Health and Care Research
ID : NIHR Academic Clinical Fellowship Award ACF-2022-2
Organisme : National Institute for Health and Care Research
ID : NIHR Academic Clinical Fellowship Award ACF-2023-2
Organisme : National Institute for Health and Care Research
ID : NIHR Research Professorship NIHR-RP-2014-05-001
Organisme : National Institute for Health and Care Research
ID : NIHR Senior Investigator Award
Organisme : National Institute for Health and Care Research
ID : NIHR Clinician Scientist Award CS-2018-18-ST2-002
Informations de copyright
© 2024 The Author(s). Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of The New York Academy of Sciences.
Références
Gordon, C. M., Ackerman, K. E., Berga, S. L., Kaplan, J. R., Mastorakos, G., Misra, M., Murad, M. H., Santoro, N. F., & Warren, M. P. (2017). Functional hypothalamic amenorrhea: An endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism, 102(5), 1413–1439.
Morrison, A. E., Fleming, S., & Levy, M. J. (2021). A review of the pathophysiology of functional hypothalamic amenorrhoea in women subject to psychological stress, disordered eating, excessive exercise or a combination of these factors. Vol. 95, Clinical Endocrinology. John Wiley and Sons Inc.
Shufelt, C. L., Torbati, T., & Dutra, E. (2017). Hypothalamic amenorrhea and the long‐term health consequences. Seminars in Reproductive Medicine, 35(3), 256–262.
Mörö, S., Kosola, S., & Holopainen, E. (2024). Girls referred for amenorrhea: Analysis of a patient series from a specialist center. Frontiers in Public Health, 12, 1304277.
Jayasena, C. N., Abbara, A., Veldhuis, J. D., Comninos, A. N., Ratnasabapathy, R., De Silva, A., Nijher, G. M. K., Ganiyu‐Dada, Z., Mehta, A., Todd, C., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2014). Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of kisspeptin‐54. Journal of Clinical Endocrinology and Metabolism, 99(6), E953–E961.
Fazeli, P. K., & Klibanski, A. (2014). Determinants of GH resistance in malnutrition. Journal of Endocrinology, 220(3), R57–R65.
Behary, P., & Comninos, A. N. (2022). Bone perspectives in functional hypothalamic amenorrhoea: An update and future avenues. Frontiers in Endocrinology, 13, 923791.
Knobil, E., Plant, T. M., Wildt, L., Belchetz, P. E., & Marshall, G. (1980). Control of the rhesus monkey menstrual cycle: Permissive role of hypothalamic gonadotropin‐releasing hormone. Science, 207(4437), 1371–1373.
Belchetz, P. E., Plant, T. M., Nakai, Y., Keogh, E. J., & Knobil, E. (1978). Hypophysial responses to continuous and intermittent delivery of hypothalamic gonadotropin‐releasing hormone. Science, 202(4368), 631–633.
Abbara, A., Jayasena, C. N., Christopoulos, G., Narayanaswamy, S., Izzi‐Engbeaya, C., Nijher, G. M. K., Comninos, A. N., Peters, D., Buckley, A., Ratnasabapathy, R., Prague, J. K., Salim, R., Lavery, S. A., Bloom, S. R., Szigeti, M., Ashby, D. A., Trew, G. H., & Dhillo, W. S. (2015). Efficacy of kisspeptin‐54 to trigger Oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. Journal of Clinical Endocrinology and Metabolism, 100(9), 3322–3331.
Lehman, M. N., Hileman, S. M., & Goodman, R. L. (2013). Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Advances in Experimental Medicine and Biology, 784, 27–62.
Hrabovszky, E., Ciofi, P., Vida, B., Horvath, M. C., Keller, E., Caraty, A., Bloom, S. R., Ghatei, M. A., Dhillo, W. S., Liposits, Z., & Kallo, I. (2010). The kisspeptin system of the human hypothalamus: Sexual dimorphism and relationship with gonadotropin‐releasing hormone and neurokinin B neurons. European Journal of Neuroscience, 31(11), 1984–1998.
Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., Bo‐Abbas, Y., Kuohung, W., Schwinof, K. M., Hendrick, A. G., Zahn, D., Dixon, J., Kaiser, U. B., Slaugenhaupt, S. A., Gusella, J. F., O'rahilly, S., Carlton, M. B. L., Crowley, W. F., Aparicio, S. A. J. R., & Colledge, W. H. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349, 1614–1627. https://www.nejm.org
Topaloglu, A. K., Tello, J. A., Kotan, L. D., Ozbek, M. N., Yilmaz, M. B., Erdogan, S., Gurbuz, F., Temiz, F., Millar, R. P., & Yuksel, B. (2012). Inactivating KISS1 mutation and hypogonadotropic hypogonadism. New England Journal of Medicine, 366(7), 629–635.
De Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., & Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1‐derived peptide receptor GPR54. Proceedings of the National Academy of Sciences, 100(19), 10972–10976. https://www.pnas.orgcgidoi10.1073pnas.1834399100
Irwig, M. S., Fraley, G. S., Smith, J. T., Acohido, B. V., Popa, S. M., Cunningham, M. J., Gottsch, M. L., Clifton, D. K., & Steiner, R. A. (2005). Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS‐1 mRNA in the male rat. Neuroendocrinology, 80(4), 264–272.
Navarro, V. M., Castellano, J. M., Fernández‐Fernández, R., Barreiro, M. L., Roa, J., Sanchez‐Criado, J. E., Aguilar, E., Dieguez, C., Pinilla, L., & Tena‐Sempere, M. (2004). Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS‐1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone‐releasing activity of KiSS‐1 peptide. Endocrinology, 145(10), 4565–4574.
Thompson, E. L., Patterson, M., Murphy, K. G., Smith, K. L., Dhillo, W. S., Todd, J. F., Ghatei, M. A., & Bloom, S. R. (2004). Central and peripheral administration of kisspeptin‐10 stimulates the hypothalamic‐pituitary‐gonadal axis. Journal of Neuroendocrinology, 16(10), 850–858.
Gottsch, M. L., Cunningham, M. J., Smith, J. T., Popa, S. M., Acohido, B. V., Crowley, W. F., Seminara, S., Clifton, D. K., & Steiner, R. A. (2004). A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 145(9), 4073–4077.
Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J., Thresher, R. R., Malinge, I., Lomet, D., Carlton, M. B. L., Colledge, W. H., Caraty, A., & Aparicio, S. A. J. R. (2005). Kisspeptin directly stimulates gonadotropin‐releasing hormone release via G protein‐coupled receptor 54. Proceedings of the National Academy of Sciences, 102(5), 1761–1766.
Shahab, M., Mastronardi, C., Seminara, S. B., Crowley, W. F., Ojeda, S. R., & Plant, T. M. (2005). Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences, 102(6), 2129–2134.
Caraty, A., Smith, J. T., Lomet, D., Ben SaïD, S., Morrissey, A., Cognie, J., Doughton, B., Baril, G., Briant, C., & Clarke, I. J. (2007). Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology, 148(11), 5258–5267.
Han, S. K., Gottsch, M. L., Lee, K. J., Popa, S. M., Smith, J. T., Jakawich, S. K., Clifton, D. K., Steiner, R. A., & Herbison, A. E. (2005). Activation of gonadotropin‐releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. Journal of Neuroscience, 25(49), 11349.
Roseweir, A. K., Kauffman, A. S., Smith, J. T., Guerriero, K. A., Morgan, K., Pielecka‐Fortuna, J., Pineda, R., Gottsch, M. L., Tena‐Sempere, M., Moenter, S. M., Terasawa, E., Clarke, I. J., Steiner, R. A., & Millar, R. P. (2009). Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. Journal of Neuroscience, 29(12), 3920.
Dhillo, W. S., Chaudhri, O. B., Patterson, M., Thompson, E. L., Murphy, K. G., Badman, M. K., Mcgowan, B. M., Amber, V., Patel, S., Ghatei, M. A., & Bloom, S. R. (2005). Kisspeptin‐54 stimulates the hypothalamic‐pituitary gonadal axis in human males. Journal of Clinical Endocrinology & Metabolism, 90(12), 6609–6615.
Dhillo, W. S., Chaudhri, O. B., Thompson, E. L., Murphy, K. G., Patterson, M., Ramachandran, R., Nijher, G. K., Amber, V., Kokkinos, A., Donaldson, M., Ghatei, M. A., & Bloom, S. R. (2007). Kisspeptin‐54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. Journal of Clinical Endocrinology & Metabolism, 92(10), 3958–3966.
Jayasena, C. N., Nijher, G. M. K., Abbara, A., Murphy, K. G., Lim, A., Patel, D., Mehta, A., Todd, C., Donaldson, M., Trew, G. H., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2010). Twice‐weekly administration of kisspeptin‐54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea. Clinical Pharmacology & Therapeutics, 88(6), 840–847.
Jayasena, C. N., Comninos, A. N., Veldhuis, J. D., Misra, S., Abbara, A., Izzi‐Engbeaya, C., Donaldson, M., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2013). A single injection of kisspeptin‐54 temporarily increases luteinizing hormone pulsatility in healthy women. Clinical Endocrinology, 79(4), 558–563.
Jayasena, C. N., Nijher, G. M. K., Chaudhri, O. B., Murphy, K. G., Ranger, A., Lim, A., Patel, D., Mehta, A., Todd, C., Ramachandran, R., Salem, V., Stamp, G. W., Donaldson, M., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2009). Subcutaneous injection of kisspeptin‐54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. Journal of Clinical Endocrinology and Metabolism, 94(11), 4315–4323.
Jayasena, C. N., Comninos, A. N., Veldhuis, J. D., Misra, S., Abbara, A., Izzi‐Engbeaya, C., Donaldson, M., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2013). A single injection of kisspeptin‐54 temporarily increases luteinizing hormone pulsatility in healthy women. Clinical Endocrinology, 79(4), 558–563.
Burger, L. L., Haisenleder, D. J., Dalkin, A. C., & Marshall, J. C. (2004). Regulation of gonadotropin subunit gene transcription. Journal of Molecular Endocrinology, 33(3), 559–584.
Clarke, I. J., & Cummins, J. T. (1982). The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized EWES1. Endocrinology, 111(5), 1737–1739.
Herbison, A. E. (2018). The gonadotropin‐releasing hormone pulse generator. Endocrinology, 159(11), 3723–3736.
Tsutsumi, R., & Webster, N. J. G. (2009). GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocrine Journal, 56, 729–737.
Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., … Fujino, M. (2001). Metastasis suppressor gene KiSS‐1 encodes peptide ligand of a G‐protein‐coupled receptor. Nature, 411(6837), 613–617.
Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D., Moore, D. J., Calamari, A., Szekeres, P. G., Sarau, H. M., Chambers, J. K., Murdock, P., Steplewski, K., Shabon, U., Miller, J. E., Middleton, S. E., Darker, J. G., Larminie, C. G. C., Wilson, S., Bergsma, D. J., Emson, P., … Harrison, D. C. (2001). AXOR12, a novel human G protein‐coupled receptor, activated by the peptide KiSS‐1 *. Journal of Biological Chemistry, 276(31), 28969–28975.
Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez‐Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S. N., Vassart, G., & Parmentier, M. (2001). The metastasis suppressor gene KiSS‐1 encodes kisspeptins, the natural ligands of the orphan G protein‐coupled receptor GPR54. Journal of Biological Chemistry, 276(37), 34631–34636.
Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). KiSS‐1, a novel human malignant melanoma metastasis‐suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737.
Gottsch, M. L., Clifton, D. K., & Steiner, R. A. (2009). From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides, 30(1), 4–9.
Teles, M. G., Bianco, S. D. C., Brito, V. N., Trarbach, E. B., Kuohung, W., Xu, S., Seminara, S. B., Mendonca, B. B., Kaiser, U. B., & Latronico, A. C. (2008). A GPR54‐activating mutation in a patient with central precocious puberty. New England Journal of Medicine, 358(7), 709–715.
Rometo, A. M., Krajewski, S. J., Lou Voytko, M., & Rance, N. E. (2007). Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. Journal of Clinical Endocrinology & Metabolism, 92(7), 2744–2750.
Clarkson, J., & Herbison, A. E. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; Sexual dimorphism and projections to gonadotropin‐releasing hormone neurons. Endocrinology, 147(12), 5817–5825.
Navarro, V. M., Gottsch, M. L., Chavkin, C., Okamura, H., Clifton, D. K., & Steiner, R. A. (2009). Regulation of gonadotropin‐releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. Journal of Neuroscience, 29(38), 11859.
Cheng, G., Coolen, L. M., Padmanabhan, V., Goodman, R. L., & Lehman, M. N. (2010). The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: Sex differences and effects of prenatal testosterone in sheep. Endocrinology, 151(1), 301–311.
Goodman, R. L., Lehman, M. N., Smith, J. T., Coolen, L. M., De Oliveira, C. V. R., Jafarzadehshirazi, M. R., Pereira, A., Iqbal, J., Caraty, A., Ciofi, P., & Clarke, I. J. (2007). Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology, 148(12), 5752–5760.
Wakabayashi, Y., Nakada, T., Murata, K., Ohkura, S., Mogi, K., Navarro, V. M., Clifton, D. K., Mori, Y., Tsukamura, H., Maeda, K. I., Steiner, R. A., & Okamura, H. (2010). Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin‐releasing hormone secretion in the goat. Journal of Neuroscience, 30(8), 3124.
Skorupskaite, K., George, J. T., & Anderson, R. A. (2014). The kisspeptin‐GnRH pathway in human reproductive health and disease. Human Reproduction Update, 20(4), 485–500.
Ruka, K. A., Burger, L. L., & Moenter, S. M. (2013). Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and k‐opioid receptors in adult male mice. Endocrinology, 154(8), 2761–2771.
Hrabovszky, E., Sipos, M. T., Molnár, C. S., Ciofi, P., Borsay, B. Á., Gergely, P., Herczeg, L., Bloom, S. R., Ghatei, M. A., Dhillo, W. S., & Liposits, Z. (2012). Low degree of overlap between kisspeptin, Neurokinin B, and Dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology, 153(10), 4978–4989.
Rometo, A. M., & Rance, N. E. (2008). Changes in prodynorphin gene expression and neuronal morphology in the hypothalamus of postmenopausal women. Journal of Neuroendocrinology, 20(12), 1376–1381.
Narayanaswamy, S., Prague, J. K., Jayasena, C. N., Papadopoulou, D. A., Mizamtsidi, M., Shah, A. J., Bassett, P., Comninos, A. N., Abbara, A., Bloom, S. R., Veldhuis, J. D., & Dhillo, W. S. (2016). Investigating the KNDy hypothesis in humans by coadministration of kisspeptin, neurokinin B, and naltrexone in men. Journal of Clinical Endocrinology & Metabolism, 101(9), 3429–3436.
Voliotis, M., Li, X. F., De Burgh, R. A., Lass, G., Ivanova, D., Mcintyre, C., O'byrne, K., & Tsaneva‐Atanasova, K. (2021). Modulation of pulsatile GnRH dynamics across the ovarian cycle via changes in the network excitability and basal activity of the arcuate kisspeptin network. eLife, 10, e71252.
Han, S. Y., Morris, P. G., Kim, J. C., Guru, S., Pardo‐Navarro, M., Yeo, S. H., Mcquillan, H. J., & Herbison, A. E. (2023). Mechanism of kisspeptin neuron synchronization for pulsatile hormone secretion in male mice. Cell Reports, 42(1), 111914.
Ivanova, D., & O'Byrne, K. T. (2024). New methods to investigate the GnRH pulse generator. Journal of Molecular Endocrinology, 72(2), e230079.
Clarkson, J., Han, S. Y., Piet, R., Mclennan, T., Kane, G. M., Ng, J., Porteous, R. W., Kim, J. S., Colledge, W. H., Iremonger, K. J., & Herbison, A. E. (2017). Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences, 114(47), E10216–23.
Han, S. Y., Kane, G., Cheong, I., & Herbison, A. E. (2019). Characterization of GnRH pulse generator activity in male mice using GCaMP fiber photometry. Endocrinology, 160(3), 557–567.
Moore, A. M., Coolen, L. M., & Lehman, M. N. (2022). In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proceedings of the National Academy of Sciences, 119(6), e2117767119.
Nagae, M., Uenoyama, Y., Okamoto, S., Tsuchida, H., Ikegami, K., Goto, T., Majarune, S., Nakamura, S., Sanbo, M., Hirabayashi, M., Kobayashi, K., Inoue, N., & Tsukamura, H. (2021). Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proceedings of the National Academy of Sciences, 118(5), e2009156118.
Popa, S. M., Moriyama, R. M., Caligioni, C. S., Yang, J. J., Cho, C. M., Concepcion, T. L., Oakley, A. E., Lee, I. H., Sanz, E., Amieux, P. S., Caraty, A., Palmiter, R. D., Navarro, V. M., Chan, Y. M., Seminara, S. B., Clifton, D. K., & Steiner, R. A. (2013). Redundancy in Kiss1 expression safeguards reproduction in the mouse. Endocrinology, 154(8), 2784–2794.
Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez‐Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S. N., Vassart, G., & Parmentier, M. (2001). The metastasis suppressor gene KiSS‐1 encodes kisspeptins, the natural ligands of the orphan G protein‐coupled receptor GPR54. Journal of Biological Chemistry, 276(37), 34631–34636.
George, J. T., Veldhuis, J. D., Roseweir, A. K., Newton, C. L., Faccenda, E., Millar, R. P., & Anderson, R. A. (2011). Kisspeptin‐10 is a potent stimulator of LH and increases pulse frequency in men. Journal of Clinical Endocrinology & Metabolism, 96(8), E1228–E1236.
Jayasena, C. N., Nijher, G. M. K., Comninos, A. N., Abbara, A., Januszewki, A., Vaal, M. L., Sriskandarajah, L., Murphy, K. G., Farzad, Z., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2011). The effects of kisspeptin‐10 on reproductive hormone release show sexual dimorphism in humans. Journal of Clinical Endocrinology and Metabolism, 96(12), E1963–E1972.
Narayanaswamy, S., Jayasena, C. N., Ng, N., Ratnasabapathy, R., Prague, J. K., Papadopoulou, D., Abbara, A., Comninos, A. N., Bassett, P., Bloom, S. R., Veldhuis, J. D., & Dhillo, W. S. (2016). Subcutaneous infusion of kisspeptin‐54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clinical Endocrinology, 84(6), 939–945.
d'Anglemont De Tassigny, X., Jayasena, C., Murphy, K. G., Dhillo, W. S., & Colledge, W. H. (2017). Mechanistic insights into the more potent effect of KP‐54 compared to KP‐10 in vivo. PLoS One, 12(5), e0176821.
Chan, Y. M., Butler, J. P., Pinnell, N. E., Pralong, F. P., Crowley, W. F., Ren, C., Chan, K. K., & Seminara, S. B. (2011). Kisspeptin resets the hypothalamic GnRH clock in men. Journal of Clinical Endocrinology & Metabolism, 96(6), E908–E915.
Stevenson, H., Bartram, S., Charalambides, M. M., Murthy, S., Petitt, T., Pradeep, A., Vineall, O., Abaraonye, I., Lancaster, A., Koysombat, K., Patel, B., & Abbara, A. (2022). Kisspeptin‐neuron control of LH pulsatility and ovulation. Frontiers in Endocrinology, 13, 951938.
Göcz, B., Takács, S., Skrapits, K., Rumpler, É., Solymosi, N., Póliska, S., Colledge, W. H., Hrabovszky, E., & Sárvári, M. (2022). Estrogen differentially regulates transcriptional landscapes of preoptic and arcuate kisspeptin neuron populations. Frontiers in Endocrinology, 13, 960769.
Adachi, S., Yamada, S., Takatsu, Y., Matsui, H., Kinoshita, M., Takase, K., Sugiura, H., Ohtaki, T., Matsumoto, H., Uenoyama, Y., Tsukamura, H., Inoue, K., & Maeda, K. I. (2007). Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. Journal of Reproduction and Development, 53(2), 367–378.
Berga, S. L., Mortola, J. F., Girton, L., Suh, B., Laughlin, G., Pham, P., & Yen, S. S. C. (1989). Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. Journal of Clinical Endocrinology & Metabolism, 68(2), 301–308.
Hurley, D. M., Brian, R. J., & Burger, H. G. (1983). Ovulation induction with subcutaneous pulsatile gonadotropin‐releasing hormone: Singleton pregnancies in patients with previous multiple pregnancies after gonadotropin therapy. Fertility and Sterility, 40(5), 575–579.
Miller, D. S. (1983). Pulsatile administration of low‐dose gonadotropin‐releasing hormone: Ovulation and pregnancy in women with hypothalamic amenorrhea. JAMA, 250(21), 2937–2941.
De Castro, F., Seal, R., & Maggi, R. (2017). ANOS1: A unified nomenclature for Kallmann syndrome 1 gene (KAL1) and anosmin‐1. Briefings in Functional Genomics, 16(4), 205–210.
Caronia, L. M., Martin, C., Welt, C. K., Sykiotis, G. P., Quinton, R., Thambundit, A., Avbelj, M., Dhruvakumar, S., Plummer, L., Hughes, V. A., Seminara, S. B., Boepple, P. A., Sidis, Y., Crowley, W. F., Martin, K. A., Hall, J. E., & Pitteloud, N. (2011). A genetic basis for functional hypothalamic amenorrhea. New England Journal of Medicine, 364(3), 215–225.
Delaney, A., Burkholder, A. B., Lavender, C. A., Plummer, L., Mericq, V., Merino, P. M., Quinton, R., Lewis, K. L., Meader, B. N., Albano, A., Shaw, N. D., Welt, C. K., Martin, K. A., Seminara, S. B., Biesecker, L. G., Bailey‐Wilson, J. E., & Hall, J. E. (2021). Increased burden of rare sequence variants in GnRH‐associated genes in women with hypothalamic amenorrhea. Journal of Clinical Endocrinology & Metabolism, 106(3), e1441–e1452.
Fontana, L., Garzia, E., Marfia, G., Galiano, V., & Miozzo, M. (2022). Epigenetics of functional hypothalamic amenorrhea. Frontiers in Endocrinology, 13, 953431.
McCosh, R. B., O'bryne, K. T., Karsch, F. J., & Breen, K. M. (2022). Regulation of the gonadotropin‐releasing hormone neuron during stress. Journal of Neuroendocrinology, 34(5), e13098.
Berga, S. L., Daniels, T. L., & Giles, D. E. (1997). Women with functional hypothalamic amenorrhea but not other forms of anovulation display amplified cortisol concentrations. Fertility and Sterility, 67(6), 1024–1030.
Phumsatitpong, C., Wagenmaker, E. R., & Moenter, S. M. (2021). Neuroendocrine interactions of the stress and reproductive axes. Frontiers in Neuroendocrinology, 63, 100928.
Berga, S. L., & Loucks, T. L. (2006). Use of cognitive behavior therapy for functional hypothalamic amenorrhea. Annals of the New York Academy of Sciences, 1092, 114–129.
Ackerman, K. E., Patel, K. T., Guereca, G., Pierce, L., Herzog, D. B., & Misra, M. (2013). Cortisol secretory parameters in young exercisers in relation to LH secretion and bone parameters. Clinical Endocrinology, 78(1), 114–119.
Biller, B. M. K., Federoff, H. J., Koenig, J. I., & Klibanski, A. (1990). Abnormal cortisol secretion and responses to corticotropin‐releasing hormone in women with hypothalamic amenorrhea. Journal of Clinical Endocrinology & Metabolism, 70(2), 311–317.
Villanueva, A. L., Schlosser, C., Hopper, B., Liu, J. H., Hoffman, D. I., & Rebar, R. W. (1986). Increased cortisol production in women runners. Journal of Clinical Endocrinology & Metabolism, 63(1), 133–136.
Andrico, S., Gambera, A., Specchia, C., Pellegrini, C., Falsetti, L., & Sartori, E. (2002). Leptin in functional hypothalamic amenorrhoea. Human Reproduction, 17, 00–00.
Gallinelli, A., Matteo, M. L., Volpe, A., & Facchinetti, F. (2000). Autonomic and neuroendocrine responses to stress in patients with functional hypothalamic secondary amenorrhea. Fertility and Sterility, 73(4), 812–816.
Michopoulos, V., Mancini, F., Loucks, T. L., & Berga, S. L. (2013). Neuroendocrine recovery initiated by cognitive behavioral therapy in women with functional hypothalamic amenorrhea: A randomized, controlled trial. Fertility and Sterility, 99(7), 2084–2091.e1.
Berga, S. L., Marcus, M. D., Loucks, T. L., Hlastala, S., Ringham, R., & Krohn, M. A. (2003). Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertility and Sterility, 80(4), 976–981.
McCosh, R. B., Breen, K. M., & Kauffman, A. S. (2019). Neural and endocrine mechanisms underlying stress‐induced suppression of pulsatile LH secretion. Molecular and Cellular Endocrinology, 498, 110579.
Yip, S. H., Liu, X., Hessler, S., Cheong, I., Porteous, R., & Herbison, A. E. (2021). Indirect suppression of pulsatile LH secretion by CRH neurons in the female mouse. Endocrinology, 162(3), bqaa237.
Barbarino, A., Marinis, L. D., Tofani, A., Casa, S. D., D'amico, C., Mancini, A., Corsello, S. M., Sciuto, R., & Barini, A. (1989). Corticotropin‐releasing hormone inhibition of gonadotropin release and the effect of opioid blockade. Journal of Clinical Endocrinology & Metabolism, 68(3), 523–528.
Xiao, E., Luckhaus, J., Niemann, W., & Ferin, M. (1989). Acute inhibition of gonadotropin secretion by corticotropin‐releasing hormone in the primate: Are the adrenal glands involved? Endocrinology, 124(4), 1632–1637.
Uenoyama, Y., Tsuchida, H., Nagae, M., Inoue, N., & Tsukamura, H. (2022). Opioidergic pathways and kisspeptin in the regulation of female reproduction in mammals. Frontiers in Neuroscience, 16, 958377.
Li, X. F., Bowe, J. E., Kinsey‐Jones, J. S., Brain, S. D., Lightman, S. L., & O'byrne, K. T. (2006). Differential role of corticotropin‐releasing factor receptor types 1 and 2 in stress‐induced suppression of pulsatile luteinising hormone secretion in the female rat. Journal of Neuroendocrinology, 18(8), 602–610.
Hahn, J. D., Kalamatianos, T., & Coen, C. W. (2003). Studies on the neuroanatomical basis for stress‐induced oestrogen‐potentiated suppression of reproductive function: Evidence against direct corticotropin‐releasing hormone projections to the vicinity of luteinizing hormone‐releasing hormone cell bodies in female rats. Journal of Neuroendocrinology, 15(8), 732–742.
Raftogianni, A., Roth, L. C., García‐González, D., Bus, T., Kühne, C., Monyer, H., Spergel, D. J., Deussing, J. M., & Grinevich, V. (2018). Deciphering the contributions of CRH receptors in the brain and pituitary to stress‐induced inhibition of the reproductive axis. Frontiers in Molecular Neuroscience, 11, 305.
Phumsatitpong, C., De Guzman, R. M., Zuloaga, D. G., & Moenter, S. M. (2020). A CRH receptor type 1 agonist increases GABA transmission to GnRH neurons in a circulating‐estradiol‐dependent manner. Endocrinology, 161(11), bqaa140.
Beverly, J. L., De Vries, M. G., Bouman, S. D., & Arseneau, L. M. (2001). Noradrenergic and GABAergic systems in the medial hypothalamus are activated during hypoglycemia. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 280(2), R563–R569.
Manev, H., & Pericic, D. (1983). Hypothalamic GABA system and plasma corticosterone in ether stressed rats. Pharmacology Biochemistry and Behavior, 18(6), 847–850.
Li, X. F., Lin, Y. S., Kinsey‐Jones, J. S., Milligan, S. R., Lightman, S. L., & O'byrne, K. T. (2011). The role of the bed nucleus of the stria terminalis in stress‐induced inhibition of pulsatile luteinising hormone secretion in the female rat. Journal of Neuroendocrinology, 23(1), 3–11.
Lin, Y., Li, X., Lupi, M., Kinsey‐Jones, J. S., Shao, B., Lightman, S. L., & O'byrne, K. T. (2011). The role of the medial and central amygdala in stress‐induced suppression of pulsatile LH secretion in female rats. Endocrinology, 152(2), 545–555.
Lin, Y. S., Li, X. F., Shao, B., Hu, M. H., Goundry, A. L. R., Jeyaram, A., Lightman, S. L., & O'byrne, K. T. (2012). The role of GABAergic signalling in stress‐induced suppression of gonadotrophin‐releasing hormone pulse generator frequency in female rats. Journal of Neuroendocrinology, 24(3), 477–488.
Li, X., Shao, B., Lin, C., O'byrne, K. T., & Lin, Y. (2015). Stress‐induced inhibition of LH pulses in female rats: Role of GABA in arcuate nucleus. Journal of Molecular Endocrinology, 55(1), 9–19.
Kriegsfeld, L. J., Mei, D. F., Bentley, G. E., Ubuka, T., Mason, A. O., Inoue, K., Ukena, K., Tsutsui, K., & Silver, R. (2006). Identification and characterization of a gonadotropin‐inhibitory system in the brains of mammals. Proceedings of the National Academy of Sciences, 103(7), 2410–2415.
Ducret, E., Anderson, G. M., & Herbison, A. E. (2009). RFamide‐related peptide‐3, a mammalian gonadotropin‐inhibitory hormone ortholog, regulates gonadotropin‐releasing hormone neuron firing in the mouse. Endocrinology, 150(6), 2799–2804.
Kirby, E. D., Geraghty, A. C., Ubuka, T., Bentley, G. E., & Kaufer, D. (2009). Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proceedings of the National Academy of Sciences, 106(27), 11324–11329.
Clarke, I. J., Bartolini, D., Conductier, G., & Henry, B. A. (2016). Stress increases gonadotropin inhibitory hormone cell activity and input to GnRH cells in ewes. Endocrinology, 157(11), 4339–4350.
Yang, J. A., Song, C. I., Hughes, J. K., Kreisman, M. J., Parra, R. A., Haisenleder, D. J., Kauffman, A. S., & Breen, K. M. (2017). Acute psychosocial stress inhibits LH pulsatility and Kiss1 neuronal activation in female mice. Endocrinology, 158(11), 3716–3723.
Yang, J. A., Hughes, J. K., Parra, R. A., Volk, K. M., & Kauffman, A. S. (2018). Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP‐3 neurons in male mice. Journal of Endocrinology, 239(3), 339–350.
Mamgain, A., Sawyer, I. L., Timajo, D. A. M., Rizwan, M. Z., Evans, M. C., Ancel, C. M., Inglis, M. A., & Anderson, G. M. (2021). RFamide‐related peptide neurons modulate reproductive function and stress responses. Journal of Neuroscience, 41(3), 474.
Poling, M. C., Shieh, M. P., Munaganuru, N., Luo, E., & Kauffman, A. S. (2014). Examination of the influence of leptin and acute metabolic challenge on RFRP‐3 neurons of mice in development and adulthood. Neuroendocrinology, 100(4), 317–333.
Saketos, M., Sharma, N., & Santoro, N. F. (1993). Suppression of the hypothalamic‐pituitary‐ovarian axis in normal women by glucocorticoids. Biology of Reproduction, 49(6), 1270–1276.
Estienne, M. J., Barb, C. R., Kesner, J. S., Kraeling, R. R., & Rampacek, G. B. (1991). Luteinizing hormone secretion in hypophysial stalk‐transected gilts given hydrocortisone acetate and pulsatile gonadotropin‐releasing hormone. Domestic Animal Endocrinology, 8(3), 407–414.
Dubey, A. K., & Plant, T. M. (1985). A suppression of gonadotropin secretion by cortisol in castrated male rhesus monkeys (Macaca mulatta) mediated by the interruption of hypothalamic gonadotropin‐releasing hormone release. Biology of Reproduction, 33(2), 423–431.
Breen, K. M., & Karsch, F. J. (2004). Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Endocrinology, 145(2), 692–698.
Todd, E., Elliott, N., & Keay, N. (2022). Relative energy deficiency in sport (RED‐S). British Journal of General Practice, 72(719), 295.
Loucks, A. B., & Thuma, J. R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. Journal of Clinical Endocrinology and Metabolism, 88(1), 297–311.
Olson, B. R., Cartledge, T., Sebring, N., Defensor, R., & Nieman, L. (1995). Short‐term fasting affects luteinizing hormone secretory dynamics but not reproductive function in normal‐weight sedentary women. Journal of Clinical Endocrinology & Metabolism, 80(4), 1187–1193.
Loucks, A. B., & Heath, E. M. (1994). Dietary restriction reduces luteinizing hormone (LH) pulse frequency during waking hours and increases LH pulse amplitude during sleep in young menstruating women. Journal of Clinical Endocrinology & Metabolism, 78(4), 910–915.
Boyar, R. M., Katz, J., Finkelstein, J. W., Kapen, S., Weiner, H., Weitzman, E. D., & Hellman, L. (1974). Anorexia nervosa — Immaturity of the 24‐hour luteinizing hormone secretory pattern. New England Journal of Medicine, 291(17), 861–865.
Travaglini, P., Beck‐Peccoz, P., Ferrari, C., Ambrosi, B., Paracchi, A., Severgnini, A., Spada, A., & Faglia, G. (1976). Some aspects of hypothalamic‐pituitary function in patients with anorexia nervosa. Acta Endocrinologica, 81(2), 252–262.
Loucks, A. B., & Thuma, J. R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. Journal of Clinical Endocrinology & Metabolism, 88(1), 297–311.
Tsuchida, H., Nonogaki, M., Takizawa, M., Inoue, N., Uenoyama, Y., & Tsukamura, H. (2023). Enkephalin‐δ opioid receptor signaling mediates glucoprivic suppression of LH pulse and gluconeogenesis in female rats. Endocrinology, 164(3), bqac216.
Tsuchida, H., Kawai, N., Yamada, K., Takizawa, M., Inoue, N., Uenoyama, Y., & Tsukamura, H. (2021). Central μ‐opioid receptor antagonism blocks glucoprivic LH pulse suppression and gluconeogenesis/feeding in female rats. Endocrinology, 162(10), bqab140.
Tsuchida, H., Mostari, P., Yamada, K., Miyazaki, S., Enomoto, Y., Inoue, N., Uenoyama, Y., & Tsukamura, H. (2020). Paraventricular dynorphin A neurons mediate LH pulse suppression induced by hindbrain glucoprivation in female rats. Endocrinology, 161(11), bqaa161.
Lieberman, J., De Souza, M. J., Wagstaff, D. A., & Williams, N. I. (2018). Menstrual disruption with exercise is not linked to an energy availability threshold. Medicine and Science in Sports and Exercise, 50(3), 551.
Nillius, S. J., Fries, H., & Wide, L. (1975). Successful induction of follicular maturation and ovulation by prolonged treatment with LH‐releasing hormone in women with anorexia nervosa. American Journal of Obstetrics and Gynecology, 122(8), 921–928.
Funcke, J. B., & Scherer, P. E. (2019). Beyond adiponectin and leptin: Adipose tissue‐derived mediators of inter‐organ communication. Journal of Lipid Research, 60, 1648–1697.
Welt, C. K., Chan, J. L., Bullen, J., Murphy, R., Smith, P., Depaoli, A. M., Karalis, A., & Mantzoros, C. S. (2004). Recombinant human leptin in women with hypothalamic amenorrhea. New England Journal of Medicine, 351(10), 987–997. https://www.nejm.org
Kolaczynski, J. W., Considine, R. V., Ohannesian, J., Marco, C., Opentanova, I., Nyce, M. R., Myint, M., & Caro, J. F. (1996). Responses of leptin to short‐term fasting and refeeding in humans: A link with ketogenesis but not ketones themselves. Diabetes, 45(11), 1511–1515.
Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372(6505), 425–432.
Farooqi, I. S., Jebb, S. A., Langmack, G., Lawrence, E., Cheetham, C. H., Prentice, A. M., Hughes, I. A., Mccamish, M. A., & O'rahilly, S. (1999). Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New England Journal of Medicine, 341(12), 879–884.
Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos‐Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252.
Chehab, F. F., Lim, M. E., & Lu, R. (1996). Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genetics, 12(3), 318–320.
Miller, K. K., Parulekar, M. S., Schoenfeld, E., Anderson, E., Hubbard, J., Klibanski, A., & Grinspoon, S. K. (1998). Decreased leptin levels in normal weight women with hypothalamic amenorrhea: The effects of body composition and nutritional intake. Journal of Clinical Endocrinology & Metabolism, 83(7), 2309–2312.
Warren, M. P., Voussoughian, F., Geer, E. B., Hyle, E. P., Adberg, C. L., & Ramos, R. H. (1999). Functional hypothalamic amenorrhea: Hypoleptinemia and disordered eating. Journal of Clinical Endocrinology & Metabolism, 84(3), 873–877.
Thong, F. S. L., Mclean, C., & Graham, T. E. (2000). Plasma leptin in female athletes: Relationship with body fat, reproductive, nutritional, and endocrine factors. Journal of Applied Physiology, 88(6), 2037–2044.
Laughlin, G. A., & Yen, S. S. C. (1997). Hypoleptinemia in women athletes: Absence of a diurnal rhythm with amenorrhea. Journal of Clinical Endocrinology & Metabolism, 82(1), 318–321.
Fontana, A., Vieira, J. G., Vianna, J. M., Bichowska, M., Krzysztofik, M., Wilk, M., & Reis, V. M. (2023). Reduction of leptin levels during acute exercise is dependent on fasting but not on caloric restriction during chronic exercise: A systematic review and meta‐analysis. PLoS One, 18(11), e0288730.
Corr, M., De Souza, M. J., Toombs, R. J., & Williams, N. I. (2011). Circulating leptin concentrations do not distinguish menstrual status in exercising women. Human Reproduction, 26(3), 685–694.
Arita, Y. (2012). Reprint of “paradoxical decrease of an adipose‐specific protein, adiponectin, in obesity”. Biochemical and Biophysical Research Communications, 425(3), 560–564.
Dobrzyn, K., Smolinska, N., Kiezun, M., Szeszko, K., Rytelewska, E., Kisielewska, K., Gudelska, M., & Kaminski, T. (2018). Adiponectin: A new regulator of female reproductive system. International Journal of Endocrinology, 2018, 1–12.
Klenke, U., Taylor‐Burds, C., & Wray, S. (2014). Metabolic influences on reproduction: Adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology, 155(5), 1851–1863.
Wen, J. P., Lv, W. S., Yang, J., Nie, A.‐F., Cheng, X. B., Yang, Y., Ge, Y., Li, X. Y., & Ning, G. (2008). Globular adiponectin inhibits GnRH secretion from GT1‐7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochemical and Biophysical Research Communications, 371(4), 756–761.
Wen, J. P., Liu, C., Bi, W. K., Hu, Y.‐T., Chen, Q., Huang, H., Liang, J.‐X., Li, L. T., Lin, L.‐X., & Chen, G. (2012). Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein‐1 in the hypothalamic GT1‐7 neurons. Journal of Endocrinology, 214(2), 177–189.
Misra, M., & Klibanski, A. (2014). Endocrine consequences of anorexia nervosa. Lancet Diabetes & Endocrinology, 2(7), 581–592.
Tagami, T., Satoh, N., Usui, T., Yamada, K., Shimatsu, A., & Kuzuya, H. (2004). Adiponectin in anorexia nervosa and bulimia nervosa. Journal of Clinical Endocrinology & Metabolism, 89(4), 1833–1837.
Tural, U., Sparpana, A., Sullivan, E., & Iosifescu, D. V. (2023). Comparison of adiponectin levels in anorexia nervosa, bulimia nervosa, binge‐eating disorder, obesity, constitutional thinness, and healthy controls: A network meta‐analysis. Life, 13, 1181.
Russell, M., Stark, J., Nayak, S., Miller, K. K., Herzog, D. B., Klibanski, A., & Misra, M. (2009). Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non‐athletic controls. Bone, 45(1), 104–109.
Ramanjaneya, M., Chen, J., Brown, J. E., Tripathi, G., Hallschmid, M., Patel, S., Kern, W., Hillhouse, E. W., Lehnert, H., Tan, B. K., & Randeva, H. S. (2010). Identification of nesfatin‐1 in human and murine adipose tissue: A novel depot‐specific adipokine with increased levels in obesity. Endocrinology, 151(7), 3169–3180.
Gharanei, S., Ramanjaneya, M., Patel, A. H., Patel, V., Shabir, K., Auld, C., Karteris, E., Kyrou, I., & Randeva, H. S. (2022). NUCB2/Nesfatin‐1 reduces obesogenic diet induced inflammation in mice subcutaneous white adipose tissue. Nutrients, 14(7), 1409.
Stengel, A., Goebel, M., Yakubov, I., Wang, L., Witcher, D., Coskun, T., Taché, Y., Sachs, G., & Lambrecht, N. W. G. (2009). Identification and characterization of nesfatin‐1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology, 150(1), 232–238.
Szeliga, A., Podfigurna, A., & Meczekalski, B. (2022). Nesfatin‐1 as a potential marker for functional hypothalamic amenorrhea. Gynecological Endocrinology, 38(11), 992–996.
Garcia‐Galiano, D., Navarro, V. M., Roa, J., Ruiz‐Pino, F., Sanchez‐Garrido, M. A., Pineda, R., Castellano, J. M., Romero, M., Aguilar, E., Gaytan, F., Dieguez, C., Pinilla, L., & Tena‐Sempere, M. (2010). The anorexigenic neuropeptide, nesfatin‐1, is indispensable for normal puberty onset in the female rat. Journal of Neuroscience, 30(23), 7783.
Hatef, A., & Unniappan, S. (2017). Gonadotropin‐releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin‐2/nesfatin‐1 in murine hypothalamic gonadotropin‐releasing hormone neurons and gonadotropes. Biology of Reproduction, 96(3), 635–651.
Mallinson, R. J., Williams, N. I., Olmsted, M. P., Scheid, J. L., Riddle, E. S., & De Souza, M. J. (2013). A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. Journal of the International Society of Sports Nutrition, 10, 1–12.
Schneider, L. F., & Warren, M. P. (2006). Functional hypothalamic amenorrhea is associated with elevated ghrelin and disordered eating. Fertility and Sterility, 86(6), 1744–1749.
Kluge, M., Schüssler, P., Schmidt, D., Uhr, M., & Steiger, A. (2012). Ghrelin suppresses secretion of luteinizing hormone (LH) and follicle‐stimulating hormone (FSH) in women. Journal of Clinical Endocrinology and Metabolism, 97(3), E448–E451.
Frazao, R., Lemko, H. M. D., Da Silva, R. P., Ratra, D. V., Lee, C. E., Williams, K. W., Zigman, J. M., & Elias, C. F. (2014). Estradiol modulates Kiss1 neuronal response to ghrelin. American Journal of Physiology‐Endocrinology and Metabolism, 306(6), E606–E614.
Farkas, I., Vastagh, C., Sárvári, M., & Liposits, Z. (2013). Ghrelin decreases firing activity of gonadotropin‐releasing hormone (GnRH) neurons in an estrous cycle and endocannabinoid signaling dependent manner. PLoS One, 8(10), e78178.
Martini, A. C., Fernández‐Fernández, R., Tovar, S., Navarro, V. M., Vigo, E., Vazquez, M. J., Davies, J. S., Thompson, N. M., Aguilar, E., Pinilla, L., Wells, T., Dieguez, C., & Tena‐Sempere, M. (2006). Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats. Endocrinology, 147(5), 2374–2382.
Forbes, S., Li, X. F., Kinsey‐Jones, J., & O'byrne, K. (2009). Effects of ghrelin on kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat. Neuroscience Letters, 460(2), 143–147.
Cabral, A., Suescun, O., Zigman, J. M., & Perello, M. (2012). Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE, 7(2), e31462.
Fernandez, G., de Francesco, P. N., Cornejo, M. P., Cabral, A., Aguggia, J. P., Duque, V. J., Sayar, N., Cantel, S., Burgos, J. I., Fehrentz, J. A., Rorato, R., Atasoy, D., Mecawi, A. S., & Perello, M. (2023). Ghrelin action in the PVH of male mice: Accessibility, neuronal targets, and CRH neurons activation. Endocrinology, 164(11), bqad154.
Cowley, M. A., Smith, R. G., Diano, S., Tschö, M., Pronchuk, N., Grove, K. L., Strasburger, C. J., Bidlingmaier, M., Esterman, M., Heiman, M. L., & Horvath, T. L. (2003). The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, 37, 649–661.
Cabral, A., Portiansky, E., Sánchez‐Jaramillo, E., Zigman, J. M., & Perello, M. (2016). Ghrelin activates hypophysiotropic corticotropin‐releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology, 67, 27–39.
Izzi‐Engbeaya, C., Jones, S., Crustna, Y., Machenahalli, P. C., Papadopoulou, D., Modi, M., Panayi, C., Starikova, J., Eng, P. C., Phylactou, M., Mills, E., Yang, L., Ratnasabapathy, R., Sykes, M., Plumptre, I., Coumbe, B., Wing, V., Pacuszka, E., Bech, P., … Dhillo, W. S. (2020). Effects of peptide YY on the hypothalamic‐pituitary‐gonadal axis in healthy men. Journal of Clinical Endocrinology and Metabolism, 105(3), 833–838.
Pinilla, L., Fernández‐Fernández, R., Vigo, E., Navarro, V. M., Roa, J., Castellano, J. M., Pineda, R., Tena‐Sempere, M., & Aguilar, E. (2006). Stimulatory effect of PYY‐(3–36) on gonadotropin secretion is potentiated in fasted rats. American Journal of Physiology‐Endocrinology and Metabolism, 290, E1162–E1171.
Izzi‐Engbeaya, C., Comninos, A. N., Clarke, S. A., Jomard, A., Yang, L., Jones, S., Abbara, A., Narayanaswamy, S., Eng, P. C., Papadopoulou, D., Prague, J. K., Bech, P., Godsland, I. F., Bassett, P., Sands, C., Camuzeaux, S., Gomez‐Romero, M., Pearce, J. T. M., Lewis, M. R., … Dhillo, W. S. (2018). The effects of kisspeptin on β‐cell function, serum metabolites and appetite in humans. Diabetes, Obesity & Metabolism, 20(12), 2800–2810.
Brüning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., Klein, R., Krone, W., Müller‐Wieland, D., & Kahn, C. R. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science, 289(5487), 2122–2125.
Evans, M. C., Rizwan, M., Mayer, C., Boehm, U., & Anderson, G. M. (2014). Evidence that insulin signalling in gonadotrophin‐releasing hormone and kisspeptin neurones does not play an essential role in metabolic regulation of fertility in mice. Journal of Neuroendocrinology, 26(7), 468–479.
Divall, S. A., Williams, T. R., Carver, S. E., Koch, L., Brüning, J. C., Kahn, C. R., Wondisford, F., Radovick, S., & Wolfe, A. (2010). Divergent roles of growth factors in the GnRH regulation of puberty in mice. Journal of Clinical Investigation, 120(8), 2900–2909.
Qiu, X., Dao, H., Wang, M., Heston, A., Garcia, K. M., Sangal, A., Dowling, A. R., Faulkner, L. D., Molitor, S. C., Elias, C. F., & Hill, J. W. (2015). Insulin and leptin signaling interact in the mouse Kiss1 neuron during the peripubertal period. PLoS ONE, 10(5), e0121974.
Dei, M., Seravalli, V., Bruni, V., Balzi, D., & Pasqua, A. (2008). Predictors of recovery of ovarian function after weight gain in subjects with amenorrhea related to restrictive eating disorders. Gynecological Endocrinology, 24(8), 459–464.
Goodman, R. L., Hileman, S. M., Nestor, C. C., Porter, K. L., Connors, J. M., Hardy, S. L., Millar, R. P., Cernea, M., Coolen, L. M., & Lehman, M. N. (2013). Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology, 154(11), 4259–4269.
Podfigurna, A., Szeliga, A., & Meczekalski, B. (2020). Serum kisspeptin and corticotropin‐releasing hormone levels in patients with functional hypothalamic amenorrhea. Gynecological and Reproductive Endocrinology and Metabolism, 1(1), 37–42.
Meczekalski, B., Katulski, K., Podfigurna‐Stopa, A., Czyzyk, A., & Genazzani, A. D. (2016). Spontaneous endogenous pulsatile release of kisspeptin is temporally coupled with luteinizing hormone in healthy women. Fertility and Sterility, 105(5), 1345–1350.e2.
Podfigurna, A., Maciejewska‐Jeske, M., Meczekalski, B., & Genazzani, A. D. (2020). Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine, 70(3), 635–643.
Ozawa, H. (2022). Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reproductive Medicine and Biology, 21, e12419.
Yang, J. A., Song, C. I., Hughes, J. K., Kreisman, M. J., Parra, R. A., Haisenleder, D. J., Kauffman, A. S., & Breen, K. M. (2017). Acute psychosocial stress inhibits LH pulsatility and kiss1 neuronal activation in female mice. Endocrinology, 158(11), 3716–3723.
Kinsey‐Jones, J. S., Li, X. F., Knox, A. M. I., Wilkinson, E. S., Zhu, X. L., Chaudhary, A. A., Milligan, S. R., Lightman, S. L., & O'byrne, K. T. (2009). Down‐regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress‐induced suppression of luteinising hormone secretion in the female rat. Journal of Neuroendocrinology, 21(1), 20–29.
Castellano, J. M., Navarro, V. M., Fernández‐Fernández, R., Nogueiras, R., Tovar, S., Roa, J., Vazquez, M. J., Vigo, E., Casanueva, F. F., Aguilar, E., Pinilla, L., Dieguez, C., & Tena‐Sempere, M. (2005). Changes in hypothalamic KiSS‐1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology, 146, 3917–3925.
Saito, R., Tanaka, K., Nishimura, H., Nishimura, K., Sonoda, S., Ueno, H., Motojima, Y., Yoshimura, M., Maruyama, T., Yamamoto, Y., Kusuhara, K., & Ueta, Y. (2019). Centrally administered kisspeptin suppresses feeding via nesfatin‐1 and oxytocin in male rats. Peptides, 112, 114–124.
Yang, L., Demetriou, L., Wall, M. B., Mills, E. G., Wing, V. C., Thurston, L., Schaufelberger, C. N., Owen, B. M., Abbara, A., Rabiner, E. A., Comninos, A. N., & Dhillo, W. S. (2021). The effects of kisspeptin on brain response to food images and psychometric parameters of appetite in healthy men. Journal of Clinical Endocrinology and Metabolism, 106(4), 1837–1848.
Anderson, G. M., Hill, J. W., Kaiser, U. B., Navarro, V. M., Ong, K. K., Perry, J. R. B., Prevot, V., Tena‐Sempere, M., & Elias, C. F. (2023). Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nature Reviews Endocrinology, 20, 111–123.
Castellano, J. M., Bentsen, A. H., Sánchez‐Garrido, M. A., Ruiz‐Pino, F., Romero, M., Garcia‐Galiano, D., Aguilar, E., Pinilla, L., Diéguez, C., Mikkelsen, J. D., & Tena‐Sempere, M. (2011). Early metabolic programming of puberty onset: Impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology, 152(9), 3396–3408.
Castellano, J. M., Navarro, V. M., Fernández‐Fernández, R., Nogueiras, R., Tovar, S., Roa, J., Vazquez, M. J., Vigo, E., Casanueva, F. F., Aguilar, E., Pinilla, L., Dieguez, C., & Tena‐Sempere, M. (2005). Changes in hypothalamic KiSS‐1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology, 146(9), 3917–3925.
Kreisman, M. J., Tadrousse, K. S., McCosh, R. B., & Breen, K. M. (2021). Neuroendocrine basis for disrupted ovarian cyclicity in female mice during chronic undernutrition. Endocrinology, 162(8), bqab103.
Navarro, V. M. (2020). Metabolic regulation of kisspeptin — The link between energy balance and reproduction. Nature Reviews Endocrinology, 16(8), 407–420.
Abbara, A., Clarke, S. A., & Dhillo, W. S. (2021). Clinical potential of kisspeptin in reproductive health. Trends in Molecular Medicine, 27(8), 807–823.
Zhang, C., Bosch, M. A., Levine, J. E., Rønnekleiv, O. K., & Kelly, M. J. (2007). Gonadotropin‐releasing hormone neurons express K ATP channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. Journal of Neuroscience, 27(38), 10153–10164.
Huang, W., Acosta‐Martínez, M., Horton, T. H., & Levine, J. E. (2008). Fasting‐induced suppression of LH secretion does not require activation of ATP‐sensitive potassium channels. American Journal of Physiology‐Endocrinology and Metabolism, 295(6), E1439–E1446.
López, M., Nogueiras, R., Tena‐Sempere, M., & Diéguez, C. (2016). Hypothalamic AMPK: A canonical regulator of whole‐body energy balance. Nature Reviews Endocrinology, 12(7), 421–432.
Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251–262.
Franssen, D., Barroso, A., Ruiz‐Pino, F., Vázquez, M. J., García‐Galiano, D., Castellano, J. M., Onieva, R., Ruiz‐Cruz, M., Poutanen, M., Gaytán, F., Diéguez, C., Pinilla, L., Lopez, M., Roa, J., & Tena‐Sempere, M. (2021). AMP‐activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism, 115, 154460.
Roland, A. V., & Moenter, S. M. (2011). Glucosensing by GnRH neurons: Inhibition by androgens and involvement of AMP‐activated protein kinase. Molecular Endocrinology, 25(5), 847–858.
Torsoni, M. A., Borges, B. C., Cote, J. L., Allen, S. J., Mahany, E., Garcia‐Galiano, D., & Elias, C. F. (2016). AMPKα2 in Kiss1 neurons is required for reproductive adaptations to acute metabolic challenges in adult female mice. Endocrinology, 157(12), 4803–4816.
Roa, J., Barroso, A., Ruiz‐Pino, F., Vázquez, M. J., Seoane‐Collazo, P., Martínez‐Sanchez, N., García‐Galiano, D., Ilhan, T., Pineda, R., León, S., Manfredi‐Lozano, M., Heras, V., Poutanen, M., Castellano, J. M., Gaytan, F., Diéguez, C., Pinilla, L., López, M., & Tena‐Sempere, M. (2018). Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proceedings of the National Academy of Sciences, 115(45), E10758–E10767.
Roa, J., Garcia‐Galiano, D., Varela, L., Sánchez‐Garrido, M. A., Pineda, R., Castellano, J. M., Ruiz‐Pino, F., Romero, M., Aguilar, E., López, M., Gaytan, F., Diéguez, C., Pinilla, L., & Tena‐Sempere, M. (2009). The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology, 150(11), 5016–5026.
Quennell, J. H., Mulligan, A. C., Tups, A., Liu, X., Phipps, S. J., Kemp, C. J., Herbison, A. E., Grattan, D. R., & Anderson, G. M. (2009). Leptin indirectly regulates gonadotropin‐releasing hormone neuronal function. Endocrinology, 150(6), 2805–2812.
Donato, J., Cravo, R. M., Frazão, R., Gautron, L., Scott, M. M., Lachey, J., Castro, I. A., Margatho, L. O., Lee, S., Lee, C., Richardson, J. A., Friedman, J., Chua, S., Coppari, R., Zigman, J. M., Elmquist, J. K., & Elias, C. F. (2011). Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. Journal of Clinical Investigation, 121(1), 355–368.
Perello, M., Scott, M. M., Sakata, I., Lee, C. E., Chuang, J. C., Osborne‐Lawrence, S., Rovinsky, S. A., Elmquist, J. K., & Zigman, J. M. (2012). Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. Journal of Comparative Neurology, 520, 281–294.
Barsh, G. S., & Schwartz, M. W. (2002). Genetic approaches to studying energy balance: Perception and integration. Nature Reviews Genetics, 3, 589–600.
Willesen, M. G., Kristensen, P., & Rømer, J. (1999). Co‐localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology, 70, 306–316.
de Bond, J. A. P., & Smith, J. T. (2014). Kisspeptin and energy balance in reproduction. Reproduction, 147, R53–R63.
Shutter, J. R., Graham, M., Kinsey, A. C., Scully, S., Lüthy, R., & Stark, K. L. (1997). Hypothalamic expression of ART, a novel gene related to agouti, is up‐regulated in obese and diabetic mutant mice. Genes & Development, 11(5), 593–602.
Wilding, J. P. (1993). Increased neuropeptide‐Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology, 132(5), 1939–1944.
Thornton, J. E., Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology, 138(11), 5063–5066.
Mizuno, T. M., Kleopoulos, S. P., Bergen, H. T., Roberts, J. L., Priest, C. A., & Mobbs, C. V. (1998). Hypothalamic pro‐opiomelanocortin mRNA is reduced by fasting in ob/ob and db/db mice, but is stimulated by leptin. Diabetes, 47(2), 294–297.
Roa, J., & Herbison, A. E. (2012). Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology, 153(11), 5587–5599.
Turi, G. F., Liposits, Z., Moenter, S. M., Fekete, C., & Hrabovszky, E. (2003). Origin of neuropeptide Y‐containing afferents to gonadotropin‐releasing hormone neurons in male mice. Endocrinology, 144(11), 4967–4974.
Leranth, C., Maclusky, N. J., Shanabrough, M., & Naftolin, F. (1988). Immunohistochemical evidence for synaptic connections between pro‐opiomelanocortin‐immunoreactive axons and LH‐RH neurons in the preoptic area of the rat. Brain Research, 449(1), 167–176.
Manfredi‐Lozano, M., Roa, J., Ruiz‐Pino, F., Piet, R., Garcia‐Galiano, D., Pineda, R., Zamora, A., Leon, S., Sanchez‐Garrido, M. A., Romero‐Ruiz, A., Dieguez, C., Vazquez, M. J., Herbison, A. E., Pinilla, L., & Tena‐Sempere, M. (2016). Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism, 5(10), 844–857.
Moore, A. M., Coolen, L. M., & Lehman, M. N. (2019). Kisspeptin/neurokinin B/dynorphin (KNDy) cells as integrators of diverse internal and external cues: Evidence from viral‐based monosynaptic tract‐tracing in mice. Scientific Reports, 9(1), 14768.
Sweeney, P., Bedenbaugh, M. N., Maldonado, J., Pan, P., Fowler, K., Williams, S. Y., Gimenez, L. E., Ghamari‐Langroudi, M., Downing, G., Gui, Y., Hadley, C. K., Joy, S. T., Mapp, A. K., Simerly, R. B., & Cone, R. D. (2021). The melanocortin‐3 receptor is a pharmacological target for the regulation of anorexia. Science Translational Medicine, 13(590), eabd6434.
Manfredi‐Lozano, M., Roa, J., Ruiz‐Pino, F., Piet, R., Garcia‐Galiano, D., Pineda, R., Zamora, A., Leon, S., Sanchez‐Garrido, M. A., Romero‐Ruiz, A., Dieguez, C., Vazquez, M. J., Herbison, A. E., Pinilla, L., & Tena‐Sempere, M. (2016). Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism, 5(10), 844–857.
Lam, B. Y. H., Williamson, A., Finer, S., Day, F. R., Tadross, J. A., Gonçalves Soares, A., Wade, K., Sweeney, P., Bedenbaugh, M. N., Porter, D. T., Melvin, A., Ellacott, K. L. J., Lippert, R. N., Buller, S., Rosmaninho‐Salgado, J., Dowsett, G. K. C., Ridley, K. E., Xu, Z., Cimino, I., … O'rahilly, S. (2021). MC3R links nutritional state to childhood growth and the timing of puberty. Nature, 599(7885), 436–441.
Zheng, Y., Rajcsanyi, L. S., Peters, T., Dempfle, A., Wudy, S. A., Hebebrand, J., & Hinney, A. (2023). Evaluation of the MC3R gene pertaining to body weight and height regulation and puberty development. Scientific Reports, 13(1), 10419.
Cravo, R. M., Margatho, L. O., Osborne‐Lawrence, S., Donato, J., Atkin, S., Bookout, A. L., Rovinsky, S., Frazão, R., Lee, C. E., Gautron, L., Zigman, J. M., & Elias, C. F. (2011). Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience, 173, 37–56.
Padilla, S. L., Qiu, J., Nestor, C. C., Zhang, C., Smith, A. W., Whiddon, B. B., Rønnekleiv, O. K., Kelly, M. J., & Palmiter, R. D. (2017). AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proceedings of the National Academy of Sciences, 114(9), 2413–2418.
Wu, Q., Whiddon, B. B., & Palmiter, R. D. (2012). Ablation of neurons expressing agouti‐related protein, but not melanin concentrating hormone, in leptin‐deficient mice restores metabolic functions and fertility. Proceedings of the National Academy of Sciences, 109, 3155–3160.
Egan, O. K., Inglis, M. A., & Anderson, G. M. (2017). Leptin signaling in AgRP neurons modulates puberty onset and adult fertility in mice. Journal of Neuroscience, 37(14), 3875–3886.
Coutinho, E. A., Prescott, M., Hessler, S., Marshall, C. J., Herbison, A. E., & Campbell, R. E. (2020). Activation of a classic hunger circuit slows luteinizing hormone pulsatility. Neuroendocrinology, 110(7–8), 671–687.
Hessler, S., Liu, X., & Herbison, A. E. (2020). Direct inhibition of arcuate kisspeptin neurones by neuropeptide Y in the male and female mouse. Journal of Neuroendocrinology, 32, e12849.
Lebrethon, M. C., Aganina, A., Fournier, M., Gérard, A., Parent, A. S., & Bourguignon, J. P. (2007). Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin‐releasing hormone secretion from male rat hypothalamus before and after puberty. Journal of Neuroendocrinology, 19, 181–188.
Chen, S. R., Chen, H., Zhou, J. J., Pradhan, G., Sun, Y., Pan, H. L., & Li, D. P. (2017). Ghrelin receptors mediate ghrelin‐induced excitation of agouti‐related protein/neuropeptide Y but not pro‐opiomelanocortin neurons. Journal of Neurochemistry, 142, 512–520.
Di Giorgio, N. P., Bizzozzero‐Hiriart, M., Libertun, C., & Lux‐Lantos, V. (2019). Unraveling the connection between GABA and kisspeptin in the control of reproduction. Reproduction, 157(6), R225–R233.
Yang, F., Zhao, S., Wang, P., & Xiang, W. (2023). Hypothalamic neuroendocrine integration of reproduction and metabolism in mammals. Journal of Endocrinology, 258, e230079.
Martin, C., Navarro, V. M., Simavli, S., Vong, L., Carroll, R. S., Lowell, B. B., & Kaiser, U. B. (2014). Leptin‐responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. Journal of Neuroscience, 34(17), 6047–6056.
Ross, R. A., Leon, S., Madara, J. C., Schafer, D., Fergani, C., Maguire, C. A., Verstegen, A. M., Brengle, E., Kong, D., Herbison, A. E., Kaiser, U. B., Lowell, B. B., & Navarro, V. M. (2018). PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. eLife, 7, e35960.
Barabás, K., Kovács, G., Vértes, V., Kövesdi, E., Faludi, P., Udvarácz, I., Pham, D., Reglődi, D., Abraham, I. M., & Nagy, Z. (2022). Stereology of gonadotropin‐releasing hormone and kisspeptin neurons in PACAP gene‐deficient female mice. Frontiers in Endocrinology, 13, 993228.
Phylactou, M., Clarke, S. A., Patel, B., Baggaley, C., Jayasena, C. N., Kelsey, T. W., Comninos, A. N., Dhillo, W. S., & Abbara, A. (2021). Clinical and biochemical discriminants between functional hypothalamic amenorrhoea (FHA) and polycystic ovary syndrome (PCOS). Clinical Endocrinology, 95(2), 239–252.
Beitl, K., Dewailly, D., Seemann, R., Hager, M., Bünker, J., Mayrhofer, D., Holzer, I., & Ott, J. (2022). Polycystic ovary syndrome phenotype D versus functional hypothalamic amenorrhea with polycystic ovarian morphology: A retrospective study about a frequent differential diagnosis. Frontiers in Endocrinology, 13, 904706.
Lauritsen, M. P., Pinborg, A., Loft, A., Petersen, J. H., Mikkelsen, A. L., Bjerge, M. R., & Nyboe Andersen, A. (2015). Revised criteria for PCOS in WHO Group II anovulatory infertility—A revival of hypothalamic amenorrhoea? Clinical Endocrinology, 82(4), 584–591.
Perkins, R. B., Hall, J. E., & Martin, K. A. (1999). Neuroendocrine abnormalities in hypothalamic amenorrhea: Spectrum, stability, and response to neurotransmitter modulation. Journal of Clinical Endocrinology & Metabolism, 84(6), 1905–1911.
Pape, J., Herbison, A. E., & Leeners, B. (2021). Recovery of menses after functional hypothalamic amenorrhoea: If, when and why. Human Reproduction Update, 27(1), 130–153.
Genazzani, A. D., Meczekalski, B., Podfigurna‐Stopa, A., Santagni, S., Rattighieri, E., Ricchieri, F., Chierchia, E., & Simoncini, T. (2012). Estriol administration modulates luteinizing hormone secretion in women with functional hypothalamic amenorrhea. Fertility and Sterility, 97(2), 483–488.
Genazzani, A. D., Podfigurna‐Stopa, A., Czyzyk, A., Katulski, K., Prati, A., Despini, G., Angioni, S., Simoncini, T., & Meczekalski, B. (2016). Short‐term estriol administration modulates hypothalamo‐pituitary function in patients with functional hypothalamic amenorrhea (FHA). Gynecological Endocrinology, 32(3), 253–257.
Genazzani, A. D., Despini, G., Prati, A., Manzo, A., Petrillo, T., Tomatis, V., Giannini, A., & Simoncini, T. (2020). Administration of very low doses of estradiol modulates the LH response to a GnRH bolus and the LH and cortisol responses to naloxone infusion in patients with functional hypothalamic amenorrhea (FHA): A pilot study. Endocrines, 1(1), 35–45.
Misra, M., Katzman, D., Miller, K. K., Mendes, N., Snelgrove, D., Russell, M., Goldstein, M. A., Ebrahimi, S., Clauss, L., Weigel, T., Mickley, D., Schoenfeld, D. A., Herzog, D. B., & Klibanski, A. (2011). Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. Journal of Bone and Mineral Research, 26(10), 2430–2438.
Ackerman, K. E., Singhal, V., Slattery, M., Eddy, K. T., Bouxsein, M. L., Lee, H., Klibanski, A., & Misra, M. (2020). Effects of estrogen replacement on bone geometry and microarchitecture in adolescent and young adult oligoamenorrheic athletes: A randomized trial. Journal of Bone and Mineral Research, 35(2), 248–260.
Kam, G. Y. W., Leung, K. C., Baxter, R. C., & Ho, K. K. Y. (2000). Estrogens exert route‐ and dose‐dependent effects on insulin‐like growth factor (IGF)‐binding protein‐3 and the acid‐labile subunit of the IGF ternary complex. Journal of Clinical Endocrinology & Metabolism, 85(5), 1918–1922.
Sonnet, E., Lacut, K., Roudaut, N., Mottier, D., Kerlan, V., & Oger, E. (2007). Effects of the route of oestrogen administration on IGF‐1 and IGFBP‐3 in healthy postmenopausal women: Results from a randomized placebo‐controlled study. Clinical Endocrinology, 66(5), 626–631.
Singhal, V., Ackerman, K. E., Bose, A., Flores, L. P. T., Lee, H., & Misra, M. (2019). Impact of route of estrogen administration on bone turnover markers in oligoamenorrheic athletes and its mediators. Journal of Clinical Endocrinology & Metabolism, 104(5), 1449–1458.
Fazeli, P. K., Wang, I. S., Miller, K. K., Herzog, D. B., Misra, M., Lee, H., Finkelstein, J. S., Bouxsein, M. L., & Klibanski, A. (2014). Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. Journal of Clinical Endocrinology & Metabolism, 99(4), 1322–1329.
Leyendecker, G., Wildt, L., & Hansmann, M. (1980). Pregnancies following chronic intermittent (pulsatile) administration of Gn‐RH by means of a portable pump (“Zyklomat”)–A new approach to the treatment of infertility in hypothalamic amenorrhea. Journal of Clinical Endocrinology and Metabolism, 51(5), 1214–1216.
Quaas, P., Quaas, A. M., Fischer, M., & De Geyter, C. (2022). Use of pulsatile gonadotropin‐releasing hormone (GnRH) in patients with functional hypothalamic amenorrhea (FHA) results in monofollicular ovulation and high cumulative live birth rates: A 25‐year cohort. Journal of Assisted Reproduction and Genetics, 39(12), 2729–2736.
Martin, K. A., Hall, J. E., Adams, J. M., & Crowley, W. F. (1993). Comparison of exogenous gonadotropins and pulsatile gonadotropin‐releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. Journal of Clinical Endocrinology and Metabolism, 77(1), 125–129.
Djurovic, M., Pekic, S., Petakov, M., Damjanovic, S., Doknic, M., Dieguez, C., Casanueva, F. F., & Popovic, V. (2004). Gonadotropin response to clomiphene and plasma leptin levels in weight recovered but amenorrhoeic patients with anorexia nervosa. Journal of Endocrinological Investigation, 27(6), 523–527.
Seyedoshohadaei, F., Tangestani, L., Zandvakili, F., & Rashadmanesh, N. (2016). Comparison of the effect of clomiphene‐estradiol valerate vs letrozole on endometrial thickness, abortion and pregnancy rate in infertile women with polycystic ovarian syndrome. Journal of Clinical and Diagnostic Research, 10(8), QC10–QC13.
Chou, S. H., Chamberland, J. P., Liu, X., Matarese, G., Gao, C., Stefanakis, R., Brinkoetter, M. T., Gong, H., Arampatzi, K., & Mantzoros, C. S. (2011). Leptin is an effective treatment for hypothalamic amenorrhea. Proceedings of the National Academy of Sciences, 108(16), 6585–6590.
Sienkiewicz, E., Magkos, F., Aronis, K. N., Brinkoetter, M., Chamberland, J. P., Chou, S., Arampatzi, K. M., Gao, C., Koniaris, A., & Mantzoros, C. S. (2011). Long‐term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism, 60(9), 1211–1221.
Patel, B., Koysombat, K., Mills, E. G., Tsoutsouki, J., Comninos, A. N., Abbara, A., & Dhillo, W. S. (2023). The emerging therapeutic potential of kisspeptin and neurokinin B. Endocrine Reviews, 45, 30–68.
Varikasuvu, S. R., Prasad, V. S., Vamshika, V., Satyanarayana, M., & Panga, J. R. (2019). Circulatory metastin/kisspeptin‐1 in polycystic ovary syndrome: A systematic review and meta‐analysis with diagnostic test accuracy. Reproductive Biomedicine Online, 39(4), 685–697.
Hunjan, T., & Abbara, A. (2019). Clinical translational studies of kisspeptin and neurokinin B. Seminars in Reproductive Medicine, 37(03), 119–124.
Jayasena, C. N., Comninos, A. N., Nijher, G. M. K., Abbara, A., De Silva, A., Veldhuis, J. D., Ratnasabapathy, R., Izzi‐Engbeaya, C., Lim, A., Patel, D. A., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2013). Twice‐daily subcutaneous injection of kisspeptin‐54 does not abolish menstrual cyclicity in healthy female volunteers. Journal of Clinical Endocrinology and Metabolism, 98(11), 4464–4474.
Maclean, D. B., Matsui, H., Suri, A., Neuwirth, R., & Colombel, M. (2014). Sustained exposure to the investigational kisspeptin analog, TAK‐448, down‐regulates testosterone into the castration range in healthy males and in patients with prostate cancer: Results from two phase 1 studies. Journal of Clinical Endocrinology and Metabolism, 99(8), E1445–E1453.
Scott, G., Ahmad, I., Howard, K., Maclean, D., Oliva, C., Warrington, S., Wilbraham, D., & Worthington, P. (2013). Double‐blind, randomized, placebo‐controlled study of safety, tolerability, pharmacokinetics and pharmacodynamics of TAK‐683, an investigational metastin analogue in healthy men. British Journal of Clinical Pharmacology, 75(2), 381–391.
Abbara, A., Eng, P. C., Phylactou, M., Clarke, S. A., Richardson, R., Sykes, C. M., Phumsatitpong, C., Mills, E., Modi, M., Izzi‐Engbeaya, C., Papadopoulou, D., Purugganan, K., Jayasena, C. N., Webber, L., Salim, R., Owen, B., Bech, P., Comninos, A. N., Mcardle, C. A., … Dhillo, W. S. (2020). Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders. Journal of Clinical Investigation, 130(12), 6739–6753.
Comninos, A. N., Hansen, M. S., Courtney, A., Choudhury, S., Yang, L., Mills, E. G., Phylactou, M., Busbridge, M., Khir, M., Thaventhiran, T., Bech, P., Tan, T., Abbara, A., Frost, M., & Dhillo, W. S. (2022). Acute effects of kisspeptin administration on bone metabolism in healthy men. Journal of Clinical Endocrinology and Metabolism, 107(6), 1529–1540.
Dundon, C. M., Rellini, A. H., Tonani, S., Santamaria, V., & Nappi, R. (2010). Mood disorders and sexual functioning in women with functional hypothalamic amenorrhea. Fertility and Sterility, 94(6), 2239–2243.
Barbagallo, F., Pedrielli, G., Bosoni, D., Tiranini, L., Cucinella, L., Calogero, A. E., Facchinetti, F., & Nappi, R. E. (2023). Sexual functioning in women with functional hypothalamic amenorrhea: Exploring the relevance of an underlying polycystic ovary syndrome (PCOS)‐phenotype. Journal of Endocrinological Investigation, 46(8), 1623–1632.
Mills, E. G., Ertl, N., Wall, M. B., Thurston, L., Yang, L., Suladze, S., Hunjan, T., Phylactou, M., Patel, B., Muzi, B., Ettehad, D., Bassett, P. A., Howard, J., Rabiner, E. A., Bech, P., Abbara, A., Goldmeier, D., Comninos, A. N., & Dhillo, W. S. (2023). Effects of kisspeptin on sexual brain processing and penile tumescence in men with hypoactive sexual desire disorder. JAMA Network Open, 6(2), e2254313.
Thurston, L., Hunjan, T., Ertl, N., Wall, M. B., Mills, E. G., Suladze, S., Patel, B., Alexander, E. C., Muzi, B., Bassett, P. A., Rabiner, E. A., Bech, P., Goldmeier, D., Abbara, A., Comninos, A. N., & Dhillo, W. S. (2022). Effects of kisspeptin administration in women with hypoactive sexual desire disorder. JAMA Network Open, 5(10), e2236131.
Izzi‐Engbeaya, C., Choudhury, M. M., Patel, B., Muzi, B., Qayuum, A., Mills, E. G., Ahsan, M., Phylactou, M., Clarke, S. A., Aslett, L., Comninos, A. N., Abbara, A., Tan, T. M., & Dhillo, W. S. (2023). The effects of kisspeptin on food intake in women with overweight or obesity. Diabetes, Obesity & Metabolism, 25(8), 2393–2397.
Tolson, K. P., Garcia, C., Yen, S., Simonds, S., Stefanidis, A., Lawrence, A., Smith, J. T., & Kauffman, A. S. (2014). Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. Journal of Clinical Investigation, 124(7), 3075–3079.