Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer.
Breast cancer
Cancer therapeutics
Ferroptosis
Heme oxygenase
Hemin
Iron
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
17 Sep 2024
17 Sep 2024
Historique:
received:
06
08
2024
accepted:
07
09
2024
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
17
9
2024
Statut:
aheadofprint
Résumé
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Identifiants
pubmed: 39287890
doi: 10.1007/s11010-024-05119-5
pii: 10.1007/s11010-024-05119-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Jung M, Mertens C, Tomat E, Brüne B (2019) Iron as a central player and promising target in cancer progression. Int J Mol Sci. https://doi.org/10.3390/ijms20020273
pubmed: 31906014
pmcid: 6982081
Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM (2018) Iron and cancer. Annu Rev Nutr 38:97–125. https://doi.org/10.1146/annurev-nutr-082117-051732
pubmed: 30130469
pmcid: 8118195
Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E (2019) The multifaceted role of heme in cancer. Front Oncol 9:1540. https://doi.org/10.3389/fonc.2019.01540
pubmed: 32010627
Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E (2014) Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 5:61. https://doi.org/10.3389/fphar.2014.00061
pubmed: 24782769
pmcid: 3986552
Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V (2010) Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 12(2):305–320. https://doi.org/10.1089/ars.2009.2787
pubmed: 19650691
Glei M, Klenow S, Sauer J, Wegewitz U, Richter K, Pool-Zobel BL (2006) Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res 594(1–2):162–171. https://doi.org/10.1016/j.mrfmmm.2005.08.006
pubmed: 16226281
Ishikawa S, Tamaki S, Ohata M, Arihara K, Itoh M (2010) Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr Food Res 54(8):1182–1191. https://doi.org/10.1002/mnfr.200900348
pubmed: 20112302
Gamage SMK, Lee KTW, Dissabandara DLO, Lam AK, Gopalan V (2021) Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Exp Mol Pathol 120:104642. https://doi.org/10.1016/j.yexmp.2021.104642
pubmed: 33905708
Consoli V, Sorrenti V, Grosso S, Vanella L (2021) Heme Oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules. https://doi.org/10.3390/biom11040589
pubmed: 34205698
pmcid: 8235249
Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
pubmed: 9131263
Kim YS, Zhuang H, Koehler RC, Doré S (2005) Distinct protective mechanisms of HO-1 and HO-2 against hydroperoxide-induced cytotoxicity. Free Radic Biol Med 38(1):85–92. https://doi.org/10.1016/j.freeradbiomed.2004.09.031
pubmed: 15589375
Singhabahu R, Kodagoda Gamage SM, Gopalan V (2024) Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. Cancer Pathog Ther 2(2):65–73. https://doi.org/10.1016/j.cpt.2023.04.001
pubmed: 38601482
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013
pubmed: 21376230
Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: the golden mean of healthy living. Redox Biol 8:205–215. https://doi.org/10.1016/j.redox.2016.01.010
pubmed: 26820564
pmcid: 4732014
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. https://doi.org/10.3390/biom9110735
pubmed: 31766246
pmcid: 6920770
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C (2020) Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. Mol Biomed 1(1):4. https://doi.org/10.1186/s43556-020-00004-1
pubmed: 35006436
pmcid: 8603983
Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z et al (2014) Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep 7(1):180–193. https://doi.org/10.1016/j.celrep.2014.02.042
pubmed: 24685134
pmcid: 4219651
Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363):225–228. https://doi.org/10.1038/nature10363
pubmed: 21849978
Nam SY, Sabapathy K (2011) p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1. Oncogene 30(44):4476–4486. https://doi.org/10.1038/onc.2011.150
pubmed: 21552291
Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG (1997) Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 214(1):54–61. https://doi.org/10.3181/00379727-214-44069
pubmed: 9012361
Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T et al (1999) Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80(12):1945–1954. https://doi.org/10.1038/sj.bjc.6690624
pubmed: 10471043
pmcid: 2363152
Hara E, Takahashi K, Tominaga T, Kumabe T, Kayama T, Suzuki H et al (1996) Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun 224(1):153–158. https://doi.org/10.1006/bbrc.1996.0999
pubmed: 8694803
Hanselmann C, Mauch C, Werner S (2001) Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem J 353(Pt 3):459–466. https://doi.org/10.1042/0264-6021:3530459
pubmed: 11171041
pmcid: 1221590
Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 9(12):2099–2117. https://doi.org/10.1089/ars.2007.1659
pubmed: 17822372
Sorrenti V, D’Amico AG, Barbagallo I, Consoli V, Grosso S, Vanella L (2021) Tin mesoporphyrin selectively reduces non-small-cell lung cancer cell line A549 proliferation by interfering with heme oxygenase and glutathione systems. Biomolecules. https://doi.org/10.3390/biom11060917
pubmed: 34205698
pmcid: 8235249
Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Künzli B et al (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11(10):3790–3798. https://doi.org/10.1158/1078-0432.CCR-04-2159
pubmed: 15897578
Fallica AN, Sorrenti V, D’Amico AG, Salerno L, Romeo G, Intagliata S et al (2021) Discovery of novel acetamide-based heme oxygenase-1 inhibitors with potent. J Med Chem 64(18):13373–13393. https://doi.org/10.1021/acs.jmedchem.1c00633
pubmed: 34472337
pmcid: 8474116
Was H, Cichon T, Smolarczyk R, Rudnicka D, Stopa M, Chevalier C et al (2006) Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol 169(6):2181–2198. https://doi.org/10.2353/ajpath.2006.051365
pubmed: 17148680
pmcid: 1762485
Consoli V, Sorrenti V, Pittalà V, Greish K, D’Amico AG, Romeo G et al (2022) Heme oxygenase modulation drives ferroptosis in TNBC cells. Int J Mol Sci. https://doi.org/10.3390/ijms23105709
pubmed: 36232720
pmcid: 9569564
Su SC, Chen YT, Hsieh YH, Yang WE, Su CW, Chiu WY et al (2022) Gambogic acid induces HO-1 expression and cell apoptosis through p38 signaling in oral squamous cell carcinoma. Am J Chin Med 50(6):1663–1679. https://doi.org/10.1142/S0192415X22500707
pubmed: 35786173
Du J, Wang L, Huang X, Zhang N, Long Z, Yang Y et al (2021) Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells. Phytomedicine 85:153551. https://doi.org/10.1016/j.phymed.2021.153551
pubmed: 33827043
Ben-Eltriki M, Gayle EJ, Walker N, Deb S (2023) Pharmacological Significance of heme oxygenase 1 in prostate cancer. Curr Issues Mol Biol 45(5):4301–4316. https://doi.org/10.3390/cimb45050273
pubmed: 37232742
pmcid: 10217584
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L (2024) Novel insights on ferroptosis modulation as potential strategy for cancer treatment: when nature kills. Antioxid Redox Signal 40(1–3):40–85. https://doi.org/10.1089/ars.2022.0179
pubmed: 37132605
pmcid: 10824235
Wu MS, Chien CC, Chang J, Chen YC (2019) Pro-apoptotic effect of haem oxygenase-1 in human colorectal carcinoma cells via endoplasmic reticular stress. J Cell Mol Med 23(8):5692–5704. https://doi.org/10.1111/jcmm.14482
pubmed: 31199053
pmcid: 6653387
Yamashita K, Ollinger R, McDaid J, Sakahama H, Wang H, Tyagi S et al (2006) Heme oxygenase-1 is essential for and promotes tolerance to transplanted organs. Faseb J 20(6):776–778. https://doi.org/10.1096/fj.05-4791fje
pubmed: 16473885
Nitti M, Ortolan J, Furfaro AL (2023) Role of heme oxygenase-1 in tumor immune escape. Redox Experimental Med 2023(1):e230006. https://doi.org/10.1530/REM-23-0006
Gómez-Lomelí P, Bravo-Cuellar A, Hernández-Flores G, Jave-Suárez LF, Aguilar-Lemarroy A, Lerma-Díaz JM et al (2014) Increase of IFN-γ and TNF-α production in CD107a + NK-92 cells co-cultured with cervical cancer cell lines pre-treated with the HO-1 inhibitor. Cancer Cell Int 14(1):100. https://doi.org/10.1186/s12935-014-0100-1
pubmed: 25302050
pmcid: 4190300
Chan K, Robert F, Oertlin C, Kapeller-Libermann D, Avizonis D, Gutierrez J et al (2019) eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat Commun 10(1):5151. https://doi.org/10.1038/s41467-019-13086-5
pubmed: 31723131
pmcid: 6853918
Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I (2015) Targeting the translation machinery in cancer. Nat Rev Drug Discov 14(4):261–278. https://doi.org/10.1038/nrd4505
pubmed: 25743081
Cheng CT, Qi Y, Wang YC, Chi KK, Chung Y, Ouyang C et al (2018) Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 1:178. https://doi.org/10.1038/s42003-018-0178-4
pubmed: 30393775
pmcid: 6203837
Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6(4):318–327. https://doi.org/10.1038/nrm1618
pubmed: 15803138
Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032870
pubmed: 29440070
pmcid: 6028073
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17(10):1374–1395. https://doi.org/10.15252/embr.201642195
pubmed: 27629041
pmcid: 5048378
Dey S, Sayers CM, Verginadis II, Lehman SL, Cheng Y, Cerniglia GJ et al (2015) ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest 125(7):2592–2608. https://doi.org/10.1172/JCI78031
pubmed: 26011642
pmcid: 4563676
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A (2019) Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1. Front Physiol 10:70. https://doi.org/10.3389/fphys.2019.00070
pubmed: 30804804
pmcid: 6378556
Hung YW, Ouyang C, Ping X, Qi Y, Wang YC, Kung HJ et al (2023) Extracellular arginine availability modulates eIF2α O-GlcNAcylation and heme oxygenase 1 translation for cellular homeostasis. J Biomed Sci 30(1):32. https://doi.org/10.1186/s12929-023-00924-4
pubmed: 37217939
pmcid: 10201738
Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740. https://doi.org/10.1038/nrm2233
pubmed: 17667954
Wu PC, Wang Q, Grobman L, Chu E, Wu DY (2012) Accelerated cellular senescence in solid tumor therapy. Exp Oncol 34(3):298–305
pubmed: 23070015
Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65(7):2795–2803. https://doi.org/10.1158/0008-5472.CAN-04-1270
pubmed: 15805280
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22):2463–2479. https://doi.org/10.1101/gad.1971610
pubmed: 21078816
pmcid: 2975923
Sikora E, Czarnecka-Herok J, Bojko A, Sunderland P (2022) Therapy-induced polyploidization and senescence: coincidence or interconnection? Semin Cancer Biol 81:83–95. https://doi.org/10.1016/j.semcancer.2020.11.015
pubmed: 33271316
Was H, Borkowska A, Olszewska A, Klemba A, Marciniak M, Synowiec A et al (2022) Polyploidy formation in cancer cells: how a Trojan horse is born. Semin Cancer Biol 81:24–36. https://doi.org/10.1016/j.semcancer.2021.03.003
pubmed: 33727077
Hedblom A, Hejazi SM, Canesin G, Choudhury R, Hanafy KA, Csizmadia E et al (2019) Heme detoxification by heme oxygenase-1 reinstates proliferative and immune balances upon genotoxic tissue injury. Cell Death Dis 10(2):72. https://doi.org/10.1038/s41419-019-1342-6
pubmed: 30683864
pmcid: 6347604
Was H, Dulak J, Jozkowicz A (2010) Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets 11(12):1551–1570. https://doi.org/10.2174/1389450111009011551
pubmed: 20704546
Kim DH, Yoon HJ, Cha YN, Surh YJ (2018) Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic Res 52(11–12):1336–1347. https://doi.org/10.1080/10715762.2018.1473571
pubmed: 30238818
Kusienicka A, Bukowska-Strakova K, Cieśla M, Nowak WN, Bronisz-Budzyńska I, Seretny A et al (2022) Heme oxygenase-1 has a greater effect on melanoma stem cell properties than the expression of melanoma-initiating cell markers. Int J Mol Sci. https://doi.org/10.3390/ijms23073596
pubmed: 35408953
pmcid: 8998882
Li C, Wu J, Dong Q, Ma J, Liu G, Gao H et al (2024) The crosstalk between oxidative stress and DNA damage induces neural stem cell senescence by HO-1/PARP1 non-canonical pathway. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2024.07.020
pubmed: 39277121
pmcid: 10990062
Kannan S, Irwin ME, Herbrich SM, Cheng T, Patterson LL, Aitken MJL et al (2022) Targeting the NRF2/HO-1 antioxidant pathway in FLT3-ITD-positive AML enhances therapy efficacy. Antioxidants (Basel). https://doi.org/10.3390/antiox11040717
pubmed: 36290802
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M et al (2023) The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 21(1):57. https://doi.org/10.1186/s12964-023-01074-8
pubmed: 36915102
pmcid: 10009952
Cheng B, Tang S, Zhe N, Ma D, Yu K, Wei D et al (2018) Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1. Biomed Pharmacother 100:509–520. https://doi.org/10.1016/j.biopha.2018.02.039
pubmed: 29494986
Yu M, Wang J, Ma D, Chen S, Lin X, Fang Q et al (2015) HO-1, RET and PML as possible markers for risk stratification of acute myelocytic leukemia and prognostic evaluation. Oncol Lett 10(5):3137–3144. https://doi.org/10.3892/ol.2015.3644
pubmed: 26722301
pmcid: 4665859
Panikkanvalappil SR, Garlapati C, Hooshmand N, Aneja R, El-Sayed MA (2019) Monitoring the dynamics of hemeoxygenase-1 activation in head and neck cancer cells in real-time using plasmonically enhanced Raman spectroscopy. Chem Sci 10(18):4876–4882. https://doi.org/10.1039/c9sc00093c
pubmed: 31183038
pmcid: 6520930
Ghadban T, Miro JT, Trump F, Tsui TY, Uzunoglu FG, Reeh M et al (2016) Diverse prognostic value of the GTn promoter polymorphism in squamous cell and adeno carcinoma of the oesophagus. Clin Genet 90(4):343–350. https://doi.org/10.1111/cge.12765
pubmed: 26916598
Gao Y, Li M, Wang B, Ma Y (2023) Prognostic value of Nrf2/HO-1 expression and its correlation with occurrence in esophageal squamous cell carcinoma. Genes Genom 45(6):723–739. https://doi.org/10.1007/s13258-023-01371-z
Yim MS, Ha YS, Kim IY, Yun SJ, Choi YH, Kim WJ (2011) HMOX1 is an important prognostic indicator of nonmuscle invasive bladder cancer recurrence and progression. J Urol 185(2):701–705. https://doi.org/10.1016/j.juro.2010.09.081
pubmed: 21168882
Miyake M, Fujimoto K, Anai S, Ohnishi S, Nakai Y, Inoue T et al (2010) Clinical significance of heme oxygenase-1 expression in non-muscle-invasive bladder cancer. Urol Int 85(3):355–363. https://doi.org/10.1159/000317785
pubmed: 20733275
Tan Q, Qin Q, Huang Z, Lian B, Mo Q, Wei C (2022) Predictive and prognostic effect of HO-1 expression in breast cancer patients undergoing neoadjuvant chemotherapy. Breast Cancer Res Treat 193(2):393–403. https://doi.org/10.1007/s10549-022-06565-9
pubmed: 35304903
Barnes P, Agbo E, Wang J, Amoani B, Kwaku Opoku Y, Okyere P et al (2023) Prognostic worth of Nrf2/BACH1/HO-1 protein expression in the development of breast cancer. Med Princ Pract 32(6):369–378. https://doi.org/10.1159/000534534
pubmed: 37827129
pmcid: 10727515
Giorgi G, Mascaró M, Gandini NA, Rabassa ME, Coló GP, Arévalo J et al (2023) Iron cycle disruption by heme oxygenase-1 activation leads to a reduced breast cancer cell survival. Biochim Biophys Acta Mol Basis Dis 1869(3):166621. https://doi.org/10.1016/j.bbadis.2022.166621
pubmed: 36539019
Nitti M, Ivaldo C, Traverso N, Furfaro AL (2021) Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants (Basel). https://doi.org/10.3390/antiox10050789
pubmed: 34067625
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P et al (2019) Breast cancer. Nat Rev Dis Primers 5(1):66. https://doi.org/10.1038/s41572-019-0111-2
pubmed: 31548545
Narod SA (2018) Personalised medicine and population health: breast and ovarian cancer. Hum Genet 137(10):769–778. https://doi.org/10.1007/s00439-018-1944-6
pubmed: 30328515
Tracey N, Creedon H, Kemp AJ, Culley J, Muir M, Klinowska T et al (2020) HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat 179(3):543–555. https://doi.org/10.1007/s10549-019-05489-1
pubmed: 31705351
Nagini S (2017) Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem 17(2):152–163. https://doi.org/10.2174/1871520616666160502122724
pubmed: 27137076
Marmé F, Schneeweiss A (2015) Targeted therapies in triple-negative breast cancer. Breast Care (Basel) 10(3):159–166. https://doi.org/10.1159/000433622
pubmed: 26557820
Rydén L, Jirström K, Haglund M, Stål O, Fernö M (2010) Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat 120(2):491–498. https://doi.org/10.1007/s10549-010-0758-6
pubmed: 20135347
Rydén L, Grabau D, Schaffner F, Jönsson PE, Ruf W, Belting M (2010) Evidence for tissue factor phosphorylation and its correlation with protease-activated receptor expression and the prognosis of primary breast cancer. Int J Cancer 126(10):2330–2340. https://doi.org/10.1002/ijc.24921
pubmed: 19795460
pmcid: 2847028
Kourti M, Westwell A, Jiang W, Cai J (2019) Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Oncotarget 10(10):1132–1148. https://doi.org/10.18632/oncotarget.26638
pubmed: 30800223
pmcid: 6383690
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G (2020) Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 6:54. https://doi.org/10.1038/s41523-020-00197-2
pubmed: 33088912
pmcid: 7568552
Popovic LS, Matovina-Brko G, Popovic M, Punie K, Cvetanovic A, Lambertini M (2023) Targeting triple-negative breast cancer: a clinical perspective. Oncol Res 31(3):221–238. https://doi.org/10.32604/or.2023.028525
pubmed: 37305385
pmcid: 10229315
Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. https://doi.org/10.1200/JCO.2008.18.1370
pubmed: 19204204
pmcid: 2667820
Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P et al (2008) How basal are triple-negative breast cancers? Int J Cancer 123(1):236–240. https://doi.org/10.1002/ijc.23518
pubmed: 18398844
Brouckaert O, Wildiers H, Floris G, Neven P (2012) Update on triple-negative breast cancer: prognosis and management strategies. Int J Womens Health 4:511–520. https://doi.org/10.2147/IJWH.S18541
pubmed: 23071421
pmcid: 3469230
Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109(1):123–139. https://doi.org/10.1007/s10549-007-9632-6
pubmed: 17578664
Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68. https://doi.org/10.1186/bcr2635
pubmed: 20813035
pmcid: 3096954
Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685. https://doi.org/10.1158/1078-0432.CCR-04-2421
pubmed: 16115903
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093
pubmed: 10963602
Higgins MJ, Stearns V (2009) Understanding resistance to tamoxifen in hormone receptor-positive breast cancer. Clin Chem 55(8):1453–1455. https://doi.org/10.1373/clinchem.2009.125377
pubmed: 19541862
Inic Z, Zegarac M, Inic M, Markovic I, Kozomara Z, Djurisic I et al (2014) Difference between luminal A and luminal B subtypes according to Ki-67, tumor size, and progesterone receptor negativity providing prognostic information. Clin Med Insights Oncol 8:107–111. https://doi.org/10.4137/CMO.S18006
pubmed: 25249766
pmcid: 4167319
Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5(3):412–424. https://doi.org/10.5306/wjco.v5.i3.412
pubmed: 25114856
pmcid: 4127612
Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21(2):100–107. https://doi.org/10.1097/PAP.0000000000000015
pubmed: 24508693
Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997. https://doi.org/10.1158/0008-5472.CAN-07-2017
pubmed: 18281472
Xu Y, Qin L, Sun T, Wu H, He T, Yang Z et al (2017) Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 36(8):1157–1166. https://doi.org/10.1038/onc.2016.286
pubmed: 27524420
Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120(1):45–53. https://doi.org/10.1038/s41416-018-0327-z
pubmed: 30413828
Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L (2021) The Crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol 11:610303. https://doi.org/10.3389/fonc.2021.610303
pubmed: 33777750
pmcid: 7991834
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P et al (2023) The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 13:1170264. https://doi.org/10.3389/fonc.2023.1170264
pubmed: 37265795
pmcid: 10229846
Chuangchot N, Jamjuntra P, Yangngam S, Luangwattananun P, Thongchot S, Junking M et al (2023) Enhancement of PD-L1-attenuated CAR-T cell function through breast cancer-associated fibroblasts-derived IL-6 signaling via STAT3/AKT pathways. Breast Cancer Res 25(1):86. https://doi.org/10.1186/s13058-023-01684-7
pubmed: 37480115
pmcid: 10362675
Ding X, Ji J, Jiang J, Cai Q, Wang C, Shi M et al (2018) HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis 9(9):867. https://doi.org/10.1038/s41419-018-0922-1
pubmed: 30158543
pmcid: 6115420
Ziani L, Chouaib S, Thiery J (2018) Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol 9:414. https://doi.org/10.3389/fimmu.2018.00414
pubmed: 29545811
pmcid: 5837994
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463-479.e10. https://doi.org/10.1016/j.ccell.2018.01.011
pubmed: 29455927
Kongtawelert P, Wudtiwai B, Shwe TH, Pothacharoen P, Phitak T (2020) Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer. Molecules. https://doi.org/10.3390/molecules25020252
pubmed: 31936263
pmcid: 7024188
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. https://doi.org/10.1038/nm730
pubmed: 12091876
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y et al (2018) Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis 9(4):422. https://doi.org/10.1038/s41419-018-0458-4
pubmed: 29556041
pmcid: 5859264
Lim B, Woodward WA, Wang X, Reuben JM, Ueno NT (2018) Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer 18(8):485–499. https://doi.org/10.1038/s41568-018-0010-y
pubmed: 29703913
Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH (2005) Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst 97(13):966–975. https://doi.org/10.1093/jnci/dji172
pubmed: 15998949
van Uden DJ, van Laarhoven HW, Westenberg AH, de Wilt JH, Blanken-Peeters CF (2015) Inflammatory breast cancer: an overview. Crit Rev Oncol Hematol 93(2):116–126. https://doi.org/10.1016/j.critrevonc.2014.09.003
pubmed: 25459672
Haiduk TS, Sicking M, Brücksken KA, Espinoza-Sánchez NA, Eder KM, Kemper B et al (2023) Dysregulated stem cell markers Musashi-1 and Musashi-2 are associated with therapy resistance in inflammatory breast cancer. Arch Med Res 54(6):102855. https://doi.org/10.1016/j.arcmed.2023.102855
pubmed: 37481823
Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y et al (2021) Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 163:105320. https://doi.org/10.1016/j.phrs.2020.105320
pubmed: 33271295
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML (2022) Cancer stem cells: biology and therapeutic implications. Arch Med Res 53(8):770–784. https://doi.org/10.1016/j.arcmed.2022.11.012
pubmed: 36462951
Wolfe AR, Trenton NJ, Debeb BG, Larson R, Ruffell B, Chu K et al (2016) Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models. Oncotarget 7(50):82482–82492. https://doi.org/10.18632/oncotarget.12694
pubmed: 27756885
pmcid: 5347707
Van Laere S, Limame R, Van Marck EA, Vermeulen PB, Dirix LY (2010) Is there a role for mammary stem cells in inflammatory breast carcinoma?: a review of evidence from cell line, animal model, and human tissue sample experiments. Cancer 116(11 Suppl):2794–2805. https://doi.org/10.1002/cncr.25180
pubmed: 20503411
Fox RG, Park FD, Koechlein CS, Kritzik M, Reya T (2015) Musashi signaling in stem cells and cancer. Annu Rev Cell Dev Biol 31:249–267. https://doi.org/10.1146/annurev-cellbio-100814-125446
pubmed: 26566113
Glazer RI, Wang XY, Yuan H, Yin Y (2008) Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 7(17):2635–2639. https://doi.org/10.4161/cc.7.17.6522
pubmed: 18719393
Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–6487. https://doi.org/10.1038/sj.onc.1210477
pubmed: 17471238
pmcid: 3021475
Fukai S, Nakajima S, Saito M, Saito K, Kase K, Nakano H et al (2023) Down-regulation of stimulator of interferon genes (STING) expression and CD8. Gastric Cancer 26(6):878–890. https://doi.org/10.1007/s10120-023-01417-x
pubmed: 37542528
de Hoon JP, Veeck J, Vriens BE, Calon TG, van Engeland M, Tjan-Heijnen VC (2012) Taxane resistance in breast cancer: a closed HER2 circuit? Biochim Biophys Acta 1825(2):197–206. https://doi.org/10.1016/j.bbcan.2012.01.001
pubmed: 22280939
Gilani RA, Kazi AA, Shah P, Schech AJ, Chumsri S, Sabnis G et al (2012) The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat 135(3):681–692. https://doi.org/10.1007/s10549-012-2148-8
pubmed: 22878889
Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y et al (2011) Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 43(8):647–653. https://doi.org/10.1093/abbs/gmr050
pubmed: 21712253
Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L et al (2003) HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22(21):3205–3212. https://doi.org/10.1038/sj.onc.1206394
pubmed: 12761490
Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS et al (2014) HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep 4:7201. https://doi.org/10.1038/srep07201
pubmed: 25467193
pmcid: 4252900
Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327. https://doi.org/10.1038/sj.emboj.7601974
pubmed: 18216874
pmcid: 2234347
Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28(1–2):51–65. https://doi.org/10.1016/j.jchemneu.2003.08.007
pubmed: 15363491
Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. https://doi.org/10.1038/ncb0311-184
pubmed: 21364565
pmcid: 3107571
Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F et al (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27(3):354–369. https://doi.org/10.1016/j.ccell.2015.02.006
pubmed: 25759021
pmcid: 4356903
Jiang W, Chen L, Guo X, Cheng C, Luo Y, Wang J et al (2022) Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy. Theranostics 12(6):2987–3006. https://doi.org/10.7150/thno.71693
pubmed: 35401832
pmcid: 8965496
Nan J, Hu X, Guo B, Xu M, Yao Y (2022) Inhibition of endoplasmic reticulum stress alleviates triple-negative breast cancer cell viability, migration, and invasion by Syntenin/SOX4/Wnt/β-catenin pathway via regulation of heat shock protein A4. Bioengineered 13(4):10564–10577. https://doi.org/10.1080/21655979.2022.2062990
pubmed: 35442158
pmcid: 9161907
Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M et al (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508(7494):103–107. https://doi.org/10.1038/nature13119
pubmed: 24670641
pmcid: 4105133
Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN et al (2012) CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43(3):364–373. https://doi.org/10.1016/j.humpath.2011.05.005
pubmed: 21835433
Lin Y, Zhong Y, Guan H, Zhang X, Sun Q (2012) CD44+/CD24- phenotype contributes to malignant relapse following surgical resection and chemotherapy in patients with invasive ductal carcinoma. J Exp Clin Cancer Res 31(1):59. https://doi.org/10.1186/1756-9966-31-59
pubmed: 22762532
pmcid: 3432011
Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD et al (2012) Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6. https://doi.org/10.1186/bcr3087
pubmed: 22225988
pmcid: 3496121
Fan P, Wang J, Li R, Chang K, Liu L, Wang Y et al (2023) Development and validation of an endoplasmic reticulum stress-related molecular prognostic model for breast cancer. Front Oncol 13:1178595. https://doi.org/10.3389/fonc.2023.1178595
pubmed: 37313465
pmcid: 10258344
Hong CC, Ambrosone CB, Ahn J, Choi JY, McCullough ML, Stevens VL et al (2007) Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 16(9):1784–1794. https://doi.org/10.1158/1055-9965.EPI-07-0247
pubmed: 17726138
Welch KD, Davis TZ, Van Eden ME, Aust SD (2002) Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med 32(7):577–583. https://doi.org/10.1016/s0891-5849(02)00760-8
pubmed: 11909692
Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533(1–2):153–171. https://doi.org/10.1016/j.mrfmmm.2003.08.023
pubmed: 14643418
Liehr JG, Jones JS (2001) Role of iron in estrogen-induced cancer. Curr Med Chem 8(7):839–849. https://doi.org/10.2174/0929867013372931
pubmed: 11375754
Torti SV, Torti FM (2013) Cellular iron metabolism in prognosis and therapy of breast cancer. Crit Rev Oncog 18(5):435–448. https://doi.org/10.1615/critrevoncog.2013007784
pubmed: 23879588
pmcid: 3736347
Elliott RL, Elliott MC, Wang F, Head JF (1993) Breast carcinoma and the role of iron metabolism. A cytochemical, tissue culture, and ultrastructural study. Ann N Y Acad Sci 698:159–166. https://doi.org/10.1111/j.1749-6632.1993.tb17204.x
pubmed: 8279755
Mohammadzadeh M, Bahrami A, Ghafouri-Taleghani F, Khalesi S, Abdi F, Hejazi E (2023) Dietary iron and the risk of lung cancer. Int J Vitam Nutr Res. https://doi.org/10.1024/0300-9831/a000789
pubmed: 37469109
Wang X, Meng Q, Chen Y, Zhang Y, Huang X, Xiang L et al (2023) Prognostic immunogenic characteristics of iron pendant disease modifiers in colon cancer. Front Immunol 14:1100725. https://doi.org/10.3389/fimmu.2023.1100725
pubmed: 37304284
pmcid: 10251496
Estêvão D, da Cruz-Ribeiro M, Cardoso AP, Costa Â, Oliveira MJ, Duarte TL et al (2023) Iron metabolism in colorectal cancer: a balancing act. Cell Oncol (Dordr) 46(6):1545–1558. https://doi.org/10.1007/s13402-023-00828-3
pubmed: 37273145
Al Khamees M, Alqurain AA, Alsaleh AA, Alhashem YA, AlSaffar N, Alibrahim NN et al (2023) Prevalence of iron deficiency and its association with breast cancer in premenopausal compared to postmenopausal women in Al Ahsa, Saudi Arabia. Cancer Inform 22:11769351231172588. https://doi.org/10.1177/11769351231172589
pubmed: 37223318
pmcid: 10201173
Wang Y, Ohara T, Chen Y, Hamada Y, Li C, Fujisawa M et al (2023) Highly metastatic subpopulation of TNBC cells has limited iron metabolism and is a target of iron chelators. Cancers (Basel). https://doi.org/10.3390/cancers15020468
pubmed: 38201605
pmcid: 10744461
Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3(5):420–425. https://doi.org/10.1093/embo-reports/kvf094
pubmed: 11991946
pmcid: 1084107
Galaris D, Skiada V, Barbouti A (2008) Redox signaling and cancer: the role of “labile” iron. Cancer Lett 266(1):21–29. https://doi.org/10.1016/j.canlet.2008.02.038
pubmed: 18374479
Cermak J, Balla J, Jacob HS, Balla G, Enright H, Nath K et al (1993) Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy. Cancer Res 53(21):5308–5313
pubmed: 8221666
Pinnix ZK, Miller LD, Wang W, D’Agostino R, Kute T, Willingham MC et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2(43):43ra56. https://doi.org/10.1126/scitranslmed.3001127
pubmed: 20686179
pmcid: 3734848
Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S et al (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 66(1):187–195. https://doi.org/10.1086/302729
pubmed: 10631150
pmcid: 1288325
Kikuchi A, Yamaya M, Suzuki S, Yasuda H, Kubo H, Nakayama K et al (2005) Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum Genet 116(5):354–360. https://doi.org/10.1007/s00439-004-1162-2
pubmed: 15688187
Chang KW, Lee TC, Yeh WI, Chung MY, Liu CJ, Chi LY et al (2004) Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br J Cancer 91(8):1551–1555. https://doi.org/10.1038/sj.bjc.6602186
pubmed: 15365571
pmcid: 2409944
Stocker R (1990) Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun 9(2):101–112. https://doi.org/10.3109/10715769009148577
pubmed: 2189794
Bauer M, Bauer I (2002) Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 4(5):749–758. https://doi.org/10.1089/152308602760598891
pubmed: 12470502
Vile GF, Tyrrell RM (1993) Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem 268(20):14678–14681
pubmed: 8325845
Turkseven S, Kruger A, Mingone CJ, Kaminski P, Inaba M, Rodella LF et al (2005) Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. Am J Physiol Heart Circ Physiol 289(2):H701–H707. https://doi.org/10.1152/ajpheart.00024.2005
pubmed: 15821039
Foresti R, Motterlini R (1999) The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res 31(6):459–475. https://doi.org/10.1080/10715769900301031
pubmed: 10630670
Chen S, Khan ZA, Barbin Y, Chakrabarti S (2004) Pro-oxidant role of heme oxygenase in mediating glucose-induced endothelial cell damage. Free Radic Res 38(12):1301–1310. https://doi.org/10.1080/10715760400017228
pubmed: 15763954
Okamoto I, Krögler J, Endler G, Kaufmann S, Mustafa S, Exner M et al (2006) A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with risk for melanoma. Int J Cancer 119(6):1312–1315. https://doi.org/10.1002/ijc.21937
pubmed: 16596642
Dutt S, Hamza I, Bartnikas TB (2022) Molecular mechanisms of iron and heme metabolism. Annu Rev Nutr 42:311–335. https://doi.org/10.1146/annurev-nutr-062320-112625
pubmed: 35508203
pmcid: 9398995
Ponka P (1997) Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89(1):1–25
pubmed: 8978272
Kaur P, Nagar S, Bhagwat M, Uddin M, Zhu Y, Vancurova I et al (2021) Activated heme synthesis regulates glycolysis and oxidative metabolism in breast and ovarian cancer cells. PLoS ONE 16(11):e0260400. https://doi.org/10.1371/journal.pone.0260400
pubmed: 34807950
pmcid: 8608300
Coló GP, Schweitzer K, Oresti GM, Alonso EG, Chávez LF, Mascaró M et al (2023) Proteomic analysis of the effect of hemin in breast cancer. Sci Rep 13(1):10091. https://doi.org/10.1038/s41598-023-35125-4
pubmed: 37344532
pmcid: 10284804
Jang HY, Hong OY, Chung EY, Park KH, Kim JS (2020) Roles of JNK/Nrf2 pathway on hemin-induced heme oxygenase-1 activation in MCF-7 human breast cancer cells. Medicina (Kaunas). https://doi.org/10.3390/medicina56060268
pubmed: 33379403
Garrido P, Shalaby A, Walsh EM, Keane N, Webber M, Keane MM et al (2017) Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget 8(46):80568–80588. https://doi.org/10.18632/oncotarget.19631
pubmed: 29113326
pmcid: 5655221
Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY et al (2017) Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid Redox Signal 26(18):1044–1058. https://doi.org/10.1089/ars.2016.6813
pubmed: 27464521
pmcid: 5488348
Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA et al (2010) Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest 120(11):3843–3854. https://doi.org/10.1172/JCI42059
pubmed: 20978357
pmcid: 2964971
Gonzales J, Holbert K, Czysz K, George J, Fernandes C, Fraidenburg DR (2022) Hemin-induced endothelial dysfunction and endothelial to mesenchymal transition in the pathogenesis of pulmonary hypertension due to chronic hemolysis. Int J Mol Sci. https://doi.org/10.3390/ijms23094763
pubmed: 36555450
pmcid: 9779379
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A (2023) Nitric oxide-scavenging, anti-migration effects, and glycosylation changes after hemin treatment of human triple-negative breast cancer cells: a mechanistic study. ACS Pharmacol Transl Sci 6(10):1416–1432. https://doi.org/10.1021/acsptsci.3c00115
pubmed: 37854626
pmcid: 10580390
Zhu X, Huang S, Zeng L, Ma J, Sun S, Zeng F et al (2017) HMOX-1 inhibits TGF-β-induced epithelial-mesenchymal transition in the MCF-7 breast cancer cell line. Int J Mol Med 40(2):411–417. https://doi.org/10.3892/ijmm.2017.3027
pubmed: 28627599
pmcid: 5505025
Hashemkhani M, Celikbas E, Khan M, Sennaroglu A, Yagci AH (2023) ALA/Ag
pubmed: 37294926
Bhattacharya S, Prajapati BG, Singh S, Anjum MM (2023) Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 149(19):17607–17634. https://doi.org/10.1007/s00432-023-05429-z
pubmed: 37776358
Palasuberniam P, Yang X, Kraus D, Jones P, Myers KA, Chen B (2015) ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 5:13298. https://doi.org/10.1038/srep13298
pubmed: 26282350
pmcid: 4539603
Laafi J, Homedan C, Jacques C, Gueguen N, Schmitt C, Puy H et al (2014) Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells. Biochimie 106:157–166. https://doi.org/10.1016/j.biochi.2014.08.014
pubmed: 25220386
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H et al (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178(2):330-345.e22. https://doi.org/10.1016/j.cell.2019.06.005
pubmed: 31257027
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR et al (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178(2):316-329.e18. https://doi.org/10.1016/j.cell.2019.06.003
pubmed: 31257023
pmcid: 6625921
Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J et al (2019) Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568(7751):254–258. https://doi.org/10.1038/s41586-019-1005-x
pubmed: 30842661
pmcid: 6698916
Lee U, Frankenberger C, Yun J, Bevilacqua E, Caldas C, Chin SF et al (2013) A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS ONE 8(12):e82125. https://doi.org/10.1371/journal.pone.0082125
pubmed: 24349199
pmcid: 3859562
Liang Y, Wu H, Lei R, Chong RA, Wei Y, Lu X et al (2012) Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem 287(40):33533–33544. https://doi.org/10.1074/jbc.M112.392332
pubmed: 22875853
pmcid: 3460454
Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T et al (2007) Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol Cell Biol 27(19):6962–6971. https://doi.org/10.1128/MCB.02415-06
pubmed: 17682061
pmcid: 2099246
Ou X, Gao G, Bazhabayi M, Zhang K, Liu F, Xiao X (2019) MALAT1 and BACH1 are prognostic biomarkers for triple-negative breast cancer. J Cancer Res Ther 15(7):1597–1602. https://doi.org/10.4103/jcrt.JCRT_282_19
pubmed: 31939443
Huang SL, Huang ZC, Zhang CJ, Xie J, Lei SS, Wu YQ et al (2022) LncRNA SNHG5 promotes the glycolysis and proliferation of breast cancer cell through regulating BACH1 via targeting miR-299. Breast Cancer 29(1):65–76. https://doi.org/10.1007/s12282-021-01281-6
pubmed: 34351577
Padilla J, Lee J (2021) A novel therapeutic target, BACH1, regulates cancer metabolism. Cells. https://doi.org/10.3390/cells10030634
pubmed: 33809182
pmcid: 8001775
Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 64:4–11. https://doi.org/10.1016/j.freeradbiomed.2013.07.025
pubmed: 23880293
Gu S, Lai Y, Chen H, Liu Y, Zhang Z (2017) miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci Rep 7(1):12155. https://doi.org/10.1038/s41598-017-06061-x
pubmed: 28939896
pmcid: 5610328
Eades G, Yang M, Yao Y, Zhang Y, Zhou Q (2011) miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286(47):40725–40733. https://doi.org/10.1074/jbc.M111.275495
pubmed: 21926171
pmcid: 3220489
Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG (2016) Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 7(52):86999–87015. https://doi.org/10.18632/oncotarget.13569
pubmed: 27894104
pmcid: 5341331
Wishart DS (2015) Is cancer a genetic disease or a metabolic disease? EBioMedicine 2(6):478–479. https://doi.org/10.1016/j.ebiom.2015.05.022
pubmed: 26288805
pmcid: 4535307
Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH et al (2014) Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16(5):434. https://doi.org/10.1186/s13058-014-0434-6
pubmed: 25209360
pmcid: 4303115
Wang L, Zhang S, Wang X (2020) The metabolic mechanisms of breast cancer metastasis. Front Oncol 10:602416. https://doi.org/10.3389/fonc.2020.602416
pubmed: 33489906
Oshi M, Roy AM, Yan L, Sasamoto M, Tokumaru Y, Wu R et al (2023) Accelerated glycolysis in tumor microenvironment is associated with worse survival in triple-negative but not consistently with ER+/HER2- breast cancer. Am J Cancer Res 13(7):3041–3054
pubmed: 37559984
pmcid: 10408485
Matsuo T, Miyata Y, Mitsunari K, Yasuda T, Ohba K, Sakai H (2017) Pathological significance and prognostic implications of heme oxygenase 1 expression in non-muscle-invasive bladder cancer: correlation with cell proliferation, angiogenesis, lymphangiogenesis and expression of VEGFs and COX-2. Oncol Lett 13(1):275–280. https://doi.org/10.3892/ol.2016.5416
pubmed: 28123555
Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 22:22. https://doi.org/10.1186/s12929-015-0128-0
pubmed: 25885228
pmcid: 4380252
Kim SH, Kim SJ, Park J, Joe Y, Lee SE, Saeidi S et al (2021) Reprograming of tumor-associated macrophages in breast tumor-bearing mice under chemotherapy by targeting heme oxygenase-1. Antioxidants (Basel). https://doi.org/10.3390/antiox10030470
pubmed: 35052608
pmcid: 8700732
Kim SH, Saeidi S, Zhong X, Gwak SY, Muna IA, Park SA et al (2020) Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages. Neoplasia 22(11):606–616. https://doi.org/10.1016/j.neo.2020.08.006
pubmed: 33039895
pmcid: 7581991
Muliaditan T, Opzoomer JW, Caron J, Okesola M, Kosti P, Lall S et al (2018) Repurposing tin mesoporphyrin as an immune checkpoint inhibitor shows therapeutic efficacy in preclinical models of cancer. Clin Cancer Res 24(7):1617–1628. https://doi.org/10.1158/1078-0432.CCR-17-2587
pubmed: 29339440
pmcid: 5889101
Khojandi N, Kuehm LM, Piening A, Donlin MJ, Hsueh EC, Schwartz TL et al (2021) Oxidized lipoproteins promote resistance to cancer immunotherapy independent of patient obesity. Cancer Immunol Res 9(2):214–226. https://doi.org/10.1158/2326-6066.CIR-20-0358
pubmed: 33303575
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20(11):1723–1742. https://doi.org/10.1089/ars.2013.5675
pubmed: 24180287
pmcid: 3961787
Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K et al (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633. https://doi.org/10.1074/jbc.M607954200
pubmed: 17430897
Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S et al (2014) Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289(39):26882–26894. https://doi.org/10.1074/jbc.M114.567685
pubmed: 25107906
pmcid: 4175329
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0
pubmed: 27100828
pmcid: 4967105
Dennery PA (2014) Signaling function of heme oxygenase proteins. Antioxid Redox Signal 20(11):1743–1753. https://doi.org/10.1089/ars.2013.5674
pubmed: 24180238
pmcid: 3961771
Mascaró M, Alonso EN, Alonso EG, Lacunza E, Curino AC, Facchinetti MM (2021) Nuclear localization of heme oxygenase-1 in pathophysiological conditions: does it explain the dual role in cancer? Antioxidants (Basel). https://doi.org/10.3390/antiox10010087
pubmed: 33440611
Gandini NA, Alonso EN, Fermento ME, Mascaró M, Abba MC, Coló GP et al (2019) Heme oxygenase-1 has an antitumor role in breast cancer. Antioxid Redox Signal 30(18):2030–2049. https://doi.org/10.1089/ars.2018.7554
pubmed: 30484334
Takizawa Y, Kizawa M, Niwa N, Komura Y, Takahashi M, Koda D et al (2023) Specific inhibitory effects of guanosine on breast cancer cell proliferation. Biochem Biophys Res Commun 673:67–72. https://doi.org/10.1016/j.bbrc.2023.06.069
pubmed: 37356147
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106
pubmed: 3798106
Xia X, Gong C, Zhang Y, Xiong H (2023) The history and development of HER2 inhibitors. Pharmaceuticals (Basel). https://doi.org/10.3390/ph16101450
pubmed: 38004402
pmcid: 10422470
Sagara A, Igarashi K, Otsuka M, Kodama A, Yamashita M, Sugiura R et al (2017) Endocan as a prognostic biomarker of triple-negative breast cancer. Breast Cancer Res Treat 161(2):269–278. https://doi.org/10.1007/s10549-016-4057-8
pubmed: 27888420
Arora S, Narayan P, Osgood CL, Wedam S, Prowell TM, Gao JJ et al (2022) U.S. FDA drug approvals for breast cancer: a decade in review. Clin Cancer Res 28(6):1072–1086. https://doi.org/10.1158/1078-0432.CCR-21-2600
pubmed: 34711632
pmcid: 8923912
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al (2018) Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121. https://doi.org/10.1056/NEJMoa1809615
pubmed: 30345906
Narayan P, Wahby S, Gao JJ, Amiri-Kordestani L, Ibrahim A, Bloomquist E et al (2020) FDA approval summary: atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res 26(10):2284–2289. https://doi.org/10.1158/1078-0432.CCR-19-3545
pubmed: 32001481
Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396(10265):1817–1828. https://doi.org/10.1016/S0140-6736(20)32531-9
pubmed: 33278935
Wahby S, Fashoyin-Aje L, Osgood CL, Cheng J, Fiero MH, Zhang L et al (2021) FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res 27(7):1850–1854. https://doi.org/10.1158/1078-0432.CCR-20-3119
pubmed: 33168656
von Arx C, De Placido P, Caltavituro A, Di Rienzo R, Buonaiuto R, De Laurentiis M et al (2023) The evolving therapeutic landscape of trastuzumab-drug conjugates: future perspectives beyond HER2-positive breast cancer. Cancer Treat Rev 113:102500. https://doi.org/10.1016/j.ctrv.2022.102500
Ocaña A, Amir E, Pandiella A (2020) HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res 22(1):15. https://doi.org/10.1186/s13058-020-1252-7
pubmed: 32005279
pmcid: 6995165
Nicolò E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM et al (2022) Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev 106:102395. https://doi.org/10.1016/j.ctrv.2022.102395
pubmed: 35468539
O’Sullivan CC, Ballman KV, McCall L, Kommalapati A, Zemla T, Weiss A et al (2021) Alliance A011801 (compassHER2 RD): postneoadjuvant T-DM1 + tucatinib/placebo in patients with residual HER2-positive invasive breast cancer. Future Oncol 17(34):4665–4676. https://doi.org/10.2217/fon-2021-0753
pubmed: 34636255
pmcid: 8600597
Waks AG, Keenan TE, Li T, Tayob N, Wulf GM, Richardson ET et al (2022) Phase Ib study of pembrolizumab in combination with trastuzumab emtansine for metastatic HER2-positive breast cancer. J Immunother Cancer. https://doi.org/10.1136/jitc-2022-005119
pubmed: 36252998
pmcid: 9577940
Patel TA, Ensor JE, Creamer SL, Boone T, Rodriguez AA, Niravath PA et al (2019) A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res 21(1):100. https://doi.org/10.1186/s13058-019-1186-0
pubmed: 31477168
pmcid: 6720931
Furfaro AL, Macay JR, Marengo B, Nitti M, Parodi A, Fenoglio D et al (2012) Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 52(2):488–496. https://doi.org/10.1016/j.freeradbiomed.2011.11.007
pubmed: 22142473
Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge et al (2015) Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci 106(8):1023–1032. https://doi.org/10.1111/cas.12712
pubmed: 26041409
pmcid: 4556392
Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N (2018) Heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI3K/Akt pathway. J Cell Mol Med 22(11):5311–5321. https://doi.org/10.1111/jcmm.13800
pubmed: 30216645
pmcid: 6201364
Ma J, Yu KN, Cheng C, Ni G, Shen J, Han W (2018) Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys 658:54–65. https://doi.org/10.1016/j.abb.2018.09.015
pubmed: 30248308
Chen N, Wu L, Yuan H, Wang J (2015) ROS/Autophagy/Nrf2 pathway mediated low-dose radiation induced radio-resistance in human lung adenocarcinoma A549 Cell. Int J Biol Sci 11(7):833–844. https://doi.org/10.7150/ijbs.10564
pubmed: 26078725
pmcid: 4466464
Wei D, Lu T, Ma D, Yu K, Li X, Chen B et al (2019) Heme oxygenase-1 reduces the sensitivity to imatinib through nonselective activation of histone deacetylases in chronic myeloid leukemia. J Cell Physiol 234(4):5252–5263. https://doi.org/10.1002/jcp.27334
pubmed: 30256411
Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M et al (2015) Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 39(5):544–552. https://doi.org/10.1016/j.leukres.2015.02.009
pubmed: 25828744
Ma D, Fang Q, Wang P, Gao R, Sun J, Li Y et al (2015) Downregulation of HO-1 promoted apoptosis induced by decitabine via increasing p15INK4B promoter demethylation in myelodysplastic syndrome. Gene Ther 22(4):287–296. https://doi.org/10.1038/gt.2015.1
pubmed: 25652099
Barrera LN, Rushworth SA, Bowles KM, MacEwan DJ (2012) Bortezomib induces heme oxygenase-1 expression in multiple myeloma. Cell Cycle 11(12):2248–2252. https://doi.org/10.4161/cc.20343
pubmed: 22617388
pmcid: 3383586
Podkalicka P, Mucha O, Józkowicz A, Dulak J, Łoboda A (2018) Heme oxygenase inhibition in cancers: possible tools and targets. Contemp Oncol (Pozn) 22(1A):23–32. https://doi.org/10.5114/wo.2018.73879
pubmed: 29628790
Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T et al (2002) Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 13(5):1031–1038. https://doi.org/10.1021/bc020010k
pubmed: 12236785
Iyer AK, Greish K, Seki T, Okazaki S, Fang J, Takeshita K et al (2007) Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. J Drug Target 15(7–8):496–506. https://doi.org/10.1080/10611860701498252
pubmed: 17671896
Schulz S, Wong RJ, Vreman HJ, Stevenson DK (2012) Metalloporphyrins - an update. Front Pharmacol 3:68. https://doi.org/10.3389/fphar.2012.00068
pubmed: 22557967
pmcid: 3337460
Wong RJ, Vreman HJ, Schulz S, Kalish FS, Pierce NW, Stevenson DK (2011) In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J Perinatol 31(Suppl 1):S35–S41. https://doi.org/10.1038/jp.2010.173
pubmed: 21448202
Kinobe RT, Dercho RA, Nakatsu K (2008) Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 86(9):577–599. https://doi.org/10.1139/y08-066
pubmed: 18758507
Vlahakis JZ, Kinobe RT, Bowers RJ, Brien JF, Nakatsu K, Szarek WA (2005) Synthesis and evaluation of azalanstat analogues as heme oxygenase inhibitors. Bioorg Med Chem Lett 15(5):1457–1461. https://doi.org/10.1016/j.bmcl.2004.12.075
pubmed: 15713406
Pittalà V, Salerno L, Romeo G, Modica MN, Siracusa MA (2013) A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem 20(30):3711–3732. https://doi.org/10.2174/0929867311320300003
pubmed: 23746277
Rahman MN, Vlahakis JZ, Vukomanovic D, Lee W, Szarek WA, Nakatsu K et al (2012) A novel, “double-clamp” binding mode for human heme oxygenase-1 inhibition. PLoS ONE 7(1):e29514. https://doi.org/10.1371/journal.pone.0029514
pubmed: 22276118
pmcid: 3261875
Rahman MN, Vlahakis JZ, Roman G, Vukomanovic D, Szarek WA, Nakatsu K et al (2010) Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors. J Inorg Biochem 104(3):324–330. https://doi.org/10.1016/j.jinorgbio.2009.10.011
pubmed: 19917515
Floresta G, Fallica AN, Patamia V, Sorrenti V, Greish K, Rescifina A et al (2021) From Far West to East: joining the molecular architecture of imidazole-like ligands in HO-1 complexes. Pharmaceuticals (Basel). https://doi.org/10.3390/ph14121289
pubmed: 34959690
Floresta G, Fallica AN, Salerno L, Sorrenti V, Pittalà V, Rescifina A (2021) Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg Chem 117:105428. https://doi.org/10.1016/j.bioorg.2021.105428
pubmed: 34710668
Salerno L, Pittalà V, Romeo G, Modica MN, Marrazzo A, Siracusa MA et al (2015) Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines. Eur J Med Chem 96:162–172. https://doi.org/10.1016/j.ejmech.2015.04.003
pubmed: 25874340
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S (2021) Mutual prodrugs of 5-fluorouracil: from a classic chemotherapeutic agent to novel potential anticancer drugs. ChemMedChem 16(23):3496–3512. https://doi.org/10.1002/cmdc.202100473
pubmed: 34415107
pmcid: 9290623
Salerno L, Sorrenti V, Pittalà V, Consoli V, Modica MN, Romeo G et al (2023) Discovery of SI 1/20 and SI 1/22 as mutual prodrugs of 5-fluorouracil and imidazole-based heme oxygenase 1 inhibitor with improved cytotoxicity in DU145 prostate cancer cells. ChemMedChem 18(8):e202300047. https://doi.org/10.1002/cmdc.202300047
pubmed: 36756924
Salerno L, Notaro A, Consoli V, Affranchi F, Pittalà V, Sorrenti V et al (2024) Evaluation of the anticancer effects exerted by 5-fluorouracil and heme oxygenase-1 inhibitor hybrids in HTC116 colorectal cancer cells. J Enzyme Inhib Med Chem 39(1):2337191. https://doi.org/10.1080/14756366.2024.2337191
pubmed: 38634597
pmcid: 11028004
Bahri M, Al-Adhami T, Demirel E, Anstee JE, Feehan KT, Rosekilly J, et al (2023) Targeting perivascular macrophages with an orally bioavailable HO-1 inhibitor improves responses to chemotherapeutic drugs in cancer [abstract]. AACR Special Conference in Cancer Research: Tumor Immunology and Immunotherapy. Toronto, Ontario, Canada: Cancer Immunol Res
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
pubmed: 22632970
pmcid: 3367386
Kim MJ, Yun GJ, Kim SE (2021) Metabolic regulation of ferroptosis in cancer. Biology (Basel). https://doi.org/10.3390/biology10020083
pubmed: 35053036
pmcid: 8672520
Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307. https://doi.org/10.1038/cddis.2016.208
pubmed: 27441659
pmcid: 4973350
Song X, Wang X, Liu Z, Yu Z (2020) Role of GPX4-mediated ferroptosis in the sensitivity of triple negative breast cancer cells to gefitinib. Front Oncol 10:597434. https://doi.org/10.3389/fonc.2020.597434
pubmed: 33425751
pmcid: 7785974
Hu C, Zhao JF, Wang YM, Wu XL, Ye L (2023) Tiliroside induces ferroptosis to repress the development of triple-negative breast cancer cells. Tissue Cell 83:102116. https://doi.org/10.1016/j.tice.2023.102116
pubmed: 37301139
Yang C, Wang T, Zhao Y, Meng X, Ding W, Wang Q et al (2022) Flavonoid 4,4’-dimethoxychalcone induced ferroptosis in cancer cells by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Free Radic Biol Med 188:14–23. https://doi.org/10.1016/j.freeradbiomed.2022.06.010
pubmed: 35697292
Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371(Pt 3):887–895. https://doi.org/10.1042/BJ20021619
pubmed: 12570874
pmcid: 1223348
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2
pubmed: 32015325
pmcid: 6997353
Consoli V, Fallica AN, Virzì NF, Salerno L, Intagliata S, Sorrenti V et al (2024) Synthesis and in vitro evaluation of CAPE derivatives as ferroptosis inducers in triple negative breast cancer. ACS Med Chem Lett 15(5):706–713. https://doi.org/10.1021/acsmedchemlett.4c00099
pubmed: 38746881
Dees S, Ganesan R, Singh S, Grewal IS (2020) Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer. Mol Cancer Ther 19(12):2409–2421. https://doi.org/10.1158/1535-7163.MCT-20-0385
pubmed: 33087511
Yang YH, Liu JW, Lu C, Wei JF (2022) CAR-T cell therapy for breast cancer: from basic research to clinical application. Int J Biol Sci 18(6):2609–2626. https://doi.org/10.7150/ijbs.70120
pubmed: 35414783
pmcid: 8990477
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F et al (2022) CAR-T cell therapy in triple-negative breast cancer: hunting the invisible devil. Front Immunol 13:1018786. https://doi.org/10.3389/fimmu.2022.1018786
pubmed: 36483567
pmcid: 9722775
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H (2022) The landscape of chimeric antigen receptor T cell therapy in breast cancer: perspectives and outlook. Front Immunol 13:887471. https://doi.org/10.3389/fimmu.2022.887471
pubmed: 35935930
pmcid: 9354605
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL et al (2018) Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 15(1):47–62. https://doi.org/10.1038/nrclinonc.2017.148
pubmed: 28925994
Song Y, Liu Q, Zuo T, Wei G, Jiao S (2020) Combined antitumor effects of anti-EGFR variant III CAR-T cell therapy and PD-1 checkpoint blockade on glioblastoma in mouse model. Cell Immunol 352:104112. https://doi.org/10.1016/j.cellimm.2020.104112
pubmed: 32305131
O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaa0984
pubmed: 28724573
pmcid: 5762203
Anurathapan U, Chan RC, Hindi HF, Mucharla R, Bajgain P, Hayes BC et al (2014) Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol Ther 22(3):623–633. https://doi.org/10.1038/mt.2013.262
pubmed: 24213558
Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K et al (2019) CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun 10(1):4355. https://doi.org/10.1038/s41467-019-12321-3
pubmed: 31554797
pmcid: 6761190
Lu J, Wu J, Tian J, Wang S (2018) Role of T cell-derived exosomes in immunoregulation. Immunol Res 66(3):313–322. https://doi.org/10.1007/s12026-018-9000-0
pubmed: 29804198
Akter Z, Salamat N, Ali MY, Zhang L (2022) The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 12:1072739. https://doi.org/10.3389/fonc.2022.1072739
pubmed: 36686754
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114
pubmed: 21617154
pmcid: 3209659
Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett 326(1):8–16. https://doi.org/10.1016/j.canlet.2012.07.026
pubmed: 22842096
pmcid: 3459352
Sun M, Zhou C, Zeng H, Puebla-Osorio N, Damiani E, Chen J et al (2015) Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem Photobiol 91(3):533–544. https://doi.org/10.1111/php.12424
pubmed: 25619546
Fang K, Sun Y, Yang J, Hu X, Chen M, Li R et al (2023) A dual stimuli-responsive nanoplatform loaded Pt. Adv Healthc Mater 12(28):e2301328. https://doi.org/10.1002/adhm.202301328
pubmed: 37392128
Zhu S, Wang S, Liu C, Lyu M, Huang Q (2022) Cu-hemin nanosheets and indocyanine green co-loaded hydrogel for photothermal therapy and amplified photodynamic therapy. Front Oncol 12:918416. https://doi.org/10.3389/fonc.2022.918416
pubmed: 35847901
pmcid: 9280130
Chen W, Du W, Zhang H, Cheng L, Song L, Ma X et al (2022) Hemin-loaded black phosphorus-based nanosystem for enhanced photodynamic therapy and a synergistic photothermally/photodynamically activated inflammatory immune response. Biomater Adv 140:213091. https://doi.org/10.1016/j.bioadv.2022.213091
pubmed: 36041322
Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302. https://doi.org/10.1038/nature04586
pubmed: 16541064
Udomprasert A, Wootthichairangsan C, Duangrat R, Chaithongyot S, Zhang Y, Nixon R et al (2022) Enhanced functional properties of three DNA origami nanostructures as doxorubicin carriers to breast cancer cells. ACS Appl Bio Mater 5(5):2262–2272. https://doi.org/10.1021/acsabm.2c00114
pubmed: 35500214
Yaghoobi E, Zavvar T, Ramezani M, Alibolandi M, Rahimzadeh Oskuei S, Zahiri M et al (2022) A multi-storey DNA nanostructure containing doxorubicin and AS1411 aptamer for targeting breast cancer cells. J Drug Target 30(10):1106–1112. https://doi.org/10.1080/1061186X.2022.2094387
pubmed: 35736221
Zhao YX, Shaw A, Zeng X, Benson E, Nyström AM, Högberg B (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6(10):8684–8691. https://doi.org/10.1021/nn3022662
pubmed: 22950811
Pal S, Rakshit T (2021) Folate-functionalized DNA origami for targeted delivery of doxorubicin to triple-negative breast cancer. Front Chem 9:721105. https://doi.org/10.3389/fchem.2021.721105
pubmed: 34485245
pmcid: 8415400
Seitz I, Ijäs H, Linko V, Kostiainen MA (2022) Optically responsive protein coating of DNA origami for triggered antigen targeting. ACS Appl Mater Interfaces 14(34):38515–38524. https://doi.org/10.1021/acsami.2c10058
pubmed: 35984232
pmcid: 9437894
Palankar R (2022) Light responsive DNA origami detects breast cancer marker. Nat Nanotechnol 17(10):1048–1049. https://doi.org/10.1038/s41565-022-01240-y
pubmed: 36220918
Alsharabasy AM, Lagarias PI, Papavasileiou KD, Afantitis A, Farràs P, Glynn S et al (2024) Examining hemin and its derivatives: induction of heme-oxygenase-1 activity and oxidative stress in breast cancer cells through collaborative experimental analysis and molecular dynamics simulations. J Med Chem. https://doi.org/10.1021/acs.jmedchem.4c00989
pubmed: 39159487