Mouse polyomavirus infection induces lamin reorganisation.
VP1
lamin A/C
lamin B
mouse polyomavirus
viral replication centres
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
17 Sep 2024
17 Sep 2024
Historique:
revised:
02
07
2024
received:
04
04
2024
accepted:
06
09
2024
medline:
17
9
2024
pubmed:
17
9
2024
entrez:
17
9
2024
Statut:
aheadofprint
Résumé
The nuclear lamina is a dense network of intermediate filaments beneath the inner nuclear membrane. Composed of A-type lamins (lamin A/C) and B-type lamins (lamins B1 and B2), the nuclear lamina provides a scaffold for the nuclear envelope and chromatin, thereby maintaining the structural integrity of the nucleus. A-type lamins are also found inside the nucleus where they interact with chromatin and participate in gene regulation. Viruses replicating in the cell nucleus have to overcome the nuclear envelope during the initial phase of infection and during the nuclear egress of viral progeny. Here, we focused on the role of lamins in the replication cycle of a dsDNA virus, mouse polyomavirus. We detected accumulation of the major capsid protein VP1 at the nuclear periphery, defects in nuclear lamina staining and different lamin A/C phosphorylation patterns in the late phase of mouse polyomavirus infection, but the nuclear envelope remained intact. An absence of lamin A/C did not affect the formation of replication complexes but did slow virus propagation. Based on our findings, we propose that the nuclear lamina is a scaffold for replication complex formation and that lamin A/C has a crucial role in the early phases of infection with mouse polyomavirus.
Banques de données
RefSeq
['J02289.1']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Grantová Agentura České Republiky
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy
ID : Czech-BioImaging LM2018129
Organisme : European Union - Next Generation EU, Project National Institute of Virology and Bacteriology
Informations de copyright
© 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Aebi U, Cohn J, Buhle L & Gerace L (1986) The nuclear lamina is a meshwork of intermediate‐type filaments. Nature 323, 560–564.
Gerace L & Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4, 335–374.
Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez‐Bey G, Powell JS, Ma H, Sullivan M, Tu Y, Chen NY et al. (2019) Concentric organization of A‐ and B‐type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci USA 116, 4307–4315.
Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben‐Harush K, Dubrovsky‐Gaupp A, Sapra KT, Goldman RD & Medalia O (2017) The molecular architecture of lamins in somatic cells. Nature 543, 261–264.
Prokocimer M, Davidovich M, Nissim‐Rafinia M, Wiesel‐Motiuk N, Bar DZ, Barkan R, Meshorer E & Gruenbaum Y (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13, 1059–1085.
Naetar N, Ferraioli S & Foisner R (2017) Lamins in the nuclear interior – life outside the lamina. J Cell Sci 130, 2087–2096.
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL & Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22, 4346–4355.
Liebl D, Difato F, Horníková L, Mannová P, Stokrová J & Forstová J (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11‐positive endosomes. J Virol 80, 4610–4622.
Qian M, Cai D, Verhey KJ & Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5, e1000465.
Huérfano S, Ryabchenko B, Španielová H & Forstová J (2017) Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER. FEBS J 284, 883–902.
Inoue T & Tsai B (2011) A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 7, e1002037.
Soldatova I, Prilepskaja T, Abrahamyan L, Forstová J & Huérfano S (2018) Interaction of the mouse polyomavirus capsid proteins with importins is required for efficient import of viral DNA into the cell nucleus. Viruses 10, E165.
Horníková L, Bruštíková K & Forstová J (2020) Microtubules in polyomavirus infection. Viruses 12, E121.
Cheng J, DeCaprio JA, Fluck MM & Schaffhausen BS (2009) Cellular transformation by simian virus 40 and murine polyoma virus T antigens. Semin Cancer Biol 19, 218–228.
Schüchner S, Nemethova M, Belisova A, Klucky B, Holnthoner W & Wintersberger E (2001) Transactivation of murine cyclin a by polyomavirus large and small T antigens. J Virol 75, 6498–6507.
Horníková L, Bruštíková K, Huérfano S & Forstová J (2022) Nuclear cytoskeleton in virus infection. Int J Mol Sci 23, 578.
Okada Y, Suzuki T, Sunden Y, Orba Y, Kose S, Imamoto N, Takahashi H, Tanaka S, Hall WW, Nagashima K et al. (2005) Dissociation of heterochromatin protein 1 from lamin B receptor induced by human polyomavirus agnoprotein: role in nuclear egress of viral particles. EMBO Rep 6, 452–457.
Butin‐Israeli V, Ben‐nun‐Shaul O, Kopatz I, Adam SA, Shimi T, Goldman RD & Oppenheim A (2011) Simian virus 40 induces lamin a/C fluctuations and nuclear envelope deformation during cell entry. Nucleus 2, 320–330.
Staufenbiel M & Deppert W (1984) Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ. J Cell Biol 98, 1886–1894.
Horníková L, Fraiberk M, Man P, Janovec V & Forstová J (2017) VP1, the major capsid protein of the mouse polyomavirus, binds microtubules, promotes their acetylation and blocks the host cell cycle. FEBS J 284, 301–323.
Briand N & Collas P (2020) Lamina‐associated domains: peripheral matters and internal affairs. Genome Biol 21, 85.
Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack C‐G, Melo‐Cardenas J, Imanishi SY, Goldman RD & Eriksson JE (2014) Interphase phosphorylation of lamin a. J Cell Sci 127, 2683–2696.
Sullivan T, Escalante‐Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL & Burke B (1999) Loss of A‐type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147, 913–920.
Chen L & Fluck M (2001) Kinetic analysis of the steps of the polyomavirus lytic cycle. J Virol 75, 8368–8379.
Liu SY & Ikegami K (2020) Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus 11, 299–314.
Döhner K, Serrero MC & Sodeik B (2023) The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 62, 101361.
Panou M‐M, Prescott EL, Hurdiss DL, Swinscoe G, Hollinshead M, Caller LG, Morgan EL, Carlisle L, Müller M, Antoni M et al. (2018) Agnoprotein is an essential egress factor during BK polyomavirus infection. Int J Mol Sci 19, E902.
Mannová P, Liebl D, Krauzewicz N, Fejtová A, Štokrová J, Palková Z, Griffin BE & Forstová J (2002) Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins. J Gen Virol 83, 2309–2319.
Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL & Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson‐Gilford progeria syndrome. Proc Natl Acad Sci USA 103, 10271–10276.
Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K & Goldman RD (2015) Structural organization of nuclear lamins a, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26, 4075–4086.
Sapra KT, Qin Z, Dubrovsky‐Gaupp A, Aebi U, Müller DJ, Buehler MJ & Medalia O (2020) Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nat Commun 11, 6205.
Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ & Ramaekers FCS (2002) Partial cleavage of A‐type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur J Cell Biol 81, 677–691.
Huerfano S, Zíla V, Boura E, Spanielová H, Stokrová J & Forstová J (2010) Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J 277, 1270–1283.
Silva L, Cliffe A, Chang L & Knipe DM (2008) Role for A‐type lamins in herpesviral DNA targeting and heterochromatin modulation. PLoS Pathog 4, e1000071.
Atchison L, Ghias A, Wilkinson F, Bonini N & Atchison ML (2003) Transcription factor YY1 functions as a PcG protein in vivo. EMBO J 22, 1347–1358.
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ & Reddy KL (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A‐type lamins. J Cell Biol 208, 33–52.
Martelli F, Iacobini C, Caruso M & Felsani A (1996) Characterization of two novel YY1 binding sites in the polyomavirus late promoter. J Virol 70, 1433–1438.
Gendron D, Delbecchi L, Bourgaux‐Ramoisy D & Bourgaux P (1996) An enhancer of recombination in polyomavirus DNA. J Virol 70, 4748–4760.
Palková Z, Spanielová H, Gottifredi V, Hollanderová D, Forstová J & Amati P (2000) The polyomavirus major capsid protein VP1 interacts with the nuclear matrix regulatory protein YY1. FEBS Lett 467, 359–364.
Carbone M, Reale A, Di Sauro A, Sthandier O, Garcia M‐I, Maione R, Caiafa P & Amati P (2006) PARP‐1 interaction with VP1 capsid protein regulates polyomavirus early gene expression. J Mol Biol 363, 773–785.
Vidaković M, Grdović N, Quesada P, Bode J & Poznanović G (2004) Poly(ADP‐ribose) polymerase‐1: association with nuclear lamins in rodent liver cells. J Cell Biochem 93, 1155–1168.
Naetar N, Georgiou K, Knapp C, Bronshtein I, Zier E, Fichtinger P, Dechat T, Garini Y & Foisner R (2021) LAP2alpha maintains a mobile and low assembly state of A‐type lamins in the nuclear interior. elife 10, e63476.
Ikegami K, Secchia S, Almakki O, Lieb JD & Moskowitz IP (2020) Phosphorylated Lamin a/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria. Dev Cell 52, 699–713.e11.
González JM, Navarro‐Puche A, Casar B, Crespo P & Andrés V (2008) Fast regulation of AP‐1 activity through interaction of lamin a/C, ERK1/2, and c‐Fos at the nuclear envelope. J Cell Biol 183, 653–666.
Martin ME, Piette J, Yaniv M, Tang WJ & Folk WR (1988) Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins. Proc Natl Acad Sci USA 85, 5839–5843.
Murakami Y, Satake M, Yamaguchi‐Iwai Y, Sakai M, Muramatsu M & Ito Y (1991) The nuclear protooncogenes c‐jun and c‐fos as regulators of DNA replication. Proc Natl Acad Sci USA 88, 3947–3951.
Erickson KD, Bouchet‐Marquis C, Heiser K, Szomolanyi‐Tsuda E, Mishra R, Lamothe B, Hoenger A & Garcea RL (2012) Virion assembly factories in the nucleus of polyomavirus‐infected cells. PLoS Pathog 8, e1002630.
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J & Huérfano S (2023) The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 20, 82.
Heiser K, Nicholas C & Garcea RL (2016) Activation of DNA damage repair pathways by murine polyomavirus. Virology 497, 346–356.
Peters DK & Garcea RL (2020) Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 16, e1008403.
Moir RD, Montag‐Lowy M & Goldman RD (1994) Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol 125, 1201–1212.
Kennedy BK, Barbie DA, Classon M, Dyson N & Harlow E (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14, 2855–2868.
Graziano S, Coll‐Bonfill N, Teodoro‐Castro B, Kuppa S, Jackson J, Shashkova E, Mahajan U, Vindigni A, Antony E & Gonzalo S (2021) Lamin a/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability. J Biol Chem 297, 101301.
Singh M, Hunt CR, Pandita RK, Kumar R, Yang C‐R, Horikoshi N, Bachoo R, Serag S, Story MD, Shay JW et al. (2013) Lamin a/C depletion enhances DNA damage‐induced stalled replication fork arrest. Mol Cell Biol 33, 1210–1222.
Dailey L & Basilico C (1985) Sequences in the polyomavirus DNA regulatory region involved in viral DNA replication and early gene expression. J Virol 54, 739–749.
Horníková L, Žíla V, Španielová H & Forstová J (2015) Mouse polyomavirus: propagation, purification, quantification, and storage. Curr Protoc Microbiol 38, 14F.1.1–14F.1.26.
Forstová J, Krauzewicz N, Wallace S, Street AJ, Dilworth SM, Beard S & Griffin BE (1993) Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol 67, 1405–1413.
Dilworth SM & Griffin BE (1982) Monoclonal antibodies against polyoma virus tumor antigens. Proc Natl Acad Sci USA 79, 1059–1063.
Váňová J, Hejtmánková A, Žáčková Suchanová J, Sauerová P, Forstová J, Hubálek Kalbáčová M & Španielová H (2020) Influence of cell‐penetrating peptides on the activity and stability of virus‐based nanoparticles. Int J Pharm 576, 119008.
Horníková L, Bruštíková K, Ryabchenko B, Zhernov I, Fraiberk M, Mariničová Z, Lánský Z & Forstová J (2020) The major capsid protein, VP1, of the mouse polyomavirus stimulates the activity of tubulin acetyltransferase 1 by microtubule stabilization. Viruses 12, 227.
van der Walt S, Schönberger JL, Nunez‐Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T & Scikit‐Image Contributors (2014) Scikit‐image: image processing in python. PeerJ 2, e453.
Solovei I & Cremer M (2010) 3D‐FISH on cultured cells combined with immunostaining. Methods Mol Biol 659, 117–126.
Sennepin AD, Charpentier S, Normand T, Sarré C, Legrand A & Mollet LM (2009) Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Anal Biochem 393, 129–131.