Surface fluorination of BiVO


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 Sep 2024
Historique:
received: 10 02 2024
accepted: 28 08 2024
medline: 18 9 2024
pubmed: 18 9 2024
entrez: 17 9 2024
Statut: epublish

Résumé

The C-C bond cleavage of biomass-derived glycerol to generate value-added C1 products remains challenging owing to its slow kinetics. We propose a surface fluorination strategy to construct dynamic dual hydrogen bonds on a semiconducting BiVO

Identifiants

pubmed: 39289360
doi: 10.1038/s41467-024-52161-4
pii: 10.1038/s41467-024-52161-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8155

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22288102, 21978021

Informations de copyright

© 2024. The Author(s).

Références

Luna, P. D. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).
pubmed: 31023896 doi: 10.1126/science.aav3506
Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).
doi: 10.1038/natrevmats.2015.10
Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).
pubmed: 28945407 doi: 10.1021/acs.accounts.6b00615
Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo‑, photo‑, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).
doi: 10.1021/acscatal.8b01317
Zhang, Z. & Huber, G. W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 47, 1351–1390 (2018).
pubmed: 29297525 doi: 10.1039/C7CS00213K
Luo, H. et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11, 2101180 (2021).
doi: 10.1002/aenm.202101180
Liu, B. & Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C 115, 19702–19709 (2011).
doi: 10.1021/jp202923w
Li, Y., Wei, X., Chen, L., Shi, J. & He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019).
pubmed: 31767871 pmcid: 6877572 doi: 10.1038/s41467-019-13375-z
Han, X. et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo
doi: 10.1021/acscatal.0c01498
Wu, J. et al. Steering the glycerol electro-reforming selectivity via cation-intermediate interactions. Angew. Chem. Int. Ed. Engl. 61, e202113362 (2022).
pubmed: 34957665 doi: 10.1002/anie.202113362
He, Z. et al. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13, 3777 (2022).
pubmed: 35773257 pmcid: 9246976 doi: 10.1038/s41467-022-31484-0
Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO
pubmed: 34322983 doi: 10.1002/anie.202107510
Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat. Commun. 14, 5621 (2023).
pubmed: 37699949 pmcid: 10497620 doi: 10.1038/s41467-023-41497-y
Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).
pubmed: 28855502 pmcid: 5577226 doi: 10.1038/s41467-017-00420-y
Tang, D. et al. A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. J. Energy Chem. 77, 80–118 (2023).
doi: 10.1016/j.jechem.2022.10.038
Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).
pubmed: 30992441 pmcid: 6467901 doi: 10.1038/s41467-019-09788-5
Ouyang, J. et al. WO
doi: 10.1021/acsami.2c04608
Lin, C. et al. Photo-electrochemical glycerol conversion over a Mie scattering effect enhanced porous BiVO
doi: 10.1002/adma.202209955
Lee, D. K. & Choi, K.-S. Enhancing long-term photostability of BiVO
doi: 10.1038/s41560-017-0057-0
Liu, Y., Wang, M., Zhang, B., Yan, D. & Xiang, X. Mediating the oxidizing capability of surface-bound hydroxyl radicals produced by photoelectrochemical water oxidation to convert glycerol into dihydroxyacetone. ACS Catal. 12, 6946–6957 (2022).
doi: 10.1021/acscatal.2c01319
Jiao, X. et al. Photocatalytic conversion of waste plastics into C
pubmed: 32003512 doi: 10.1002/anie.201915766
Sheng, H. et al. Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study. Angew. Chem. Int. Ed. Engl. 54, 5905–5909 (2015).
pubmed: 25809908 doi: 10.1002/anie.201412035
Kim, T. W. & Choi, K.-S. Nanoporous BiVO
pubmed: 24526312 doi: 10.1126/science.1246913
Zhai, S., Teng, F., Yang, X., Sun, P. & Liang, S. A straightforward NH
doi: 10.1016/j.colsurfa.2020.124496
Zhang, B., Chou, L. & Bi, Y. Tuning surface electronegativity of BiVO
doi: 10.1016/j.apcatb.2019.118267
Lu, Y. et al. Boosting charge transport in BiVO
doi: 10.1002/adma.202108178
Nguyen, T. D. et al. Co
pubmed: 35530596 pmcid: 9069272 doi: 10.1039/C9RA04188E
Ke, D., Peng, T., Ma, L., Cai, P. & Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO
pubmed: 19466799 doi: 10.1021/ic900064m
Minella, M. et al. Effect of fluorination on the surface properties of titania P25 powder: an FTIR study. Langmuir 26, 2521–2527 (2010).
pubmed: 19877699 doi: 10.1021/la902807g
Kou, S. et al. Photocatalytic activity and photocorrosion of oriented BiVO
doi: 10.1039/D0CY00920B
Bu, Y. et al. Optimization of the photo-electrochemical performance of Mo-doped BiVO
doi: 10.1002/admi.201601235
Whitcher, T. J. et al. Enhancement of the work function of indium tin oxide by surface modification using caesium fluoride. J. Phys. D Appl. Phys. 46, 475102 (2013).
doi: 10.1088/0022-3727/46/47/475102
Tian, C. M. et al. Electronic structure, optical properties, and photoelectrochemical activity of Sn-Doped Fe
doi: 10.1021/acs.jpcc.0c02875
Liu, S., Yin, K., Ren, W., Cheng, B. & Yu, J. Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. J. Mater. Chem. 22, 17759 (2012).
doi: 10.1039/c2jm33337f
Huang, G. & Zhu, Y. Enhanced photocatalytic activity of ZnWO
doi: 10.1021/jp071987v
Gao, R.-T. & Wang, L. Stable cocatalyst-free BiVO
pubmed: 32888248 doi: 10.1002/anie.202010908
Yin, J. et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 142, 18378–18386 (2020).
pubmed: 32955265 doi: 10.1021/jacs.0c05050
Ding, L. et al. The vital role of surface Brönsted acid/base sites for the photocatalytic formation of free ·OH radicals. Appl. Catal. B 266, 118634 (2020).
doi: 10.1016/j.apcatb.2020.118634
Seki, T. et al. The bending mode of water: a powerful probe for hydrogen bond structure of aqueous systems. J. Phys. Chem. Lett. 11, 8459–8469 (2020).
pubmed: 32931284 pmcid: 7584361 doi: 10.1021/acs.jpclett.0c01259
Cheng, W. R., Xi, S. B., Wu, Z. P., Luan, D. Y. & Lou, X. W. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci. Adv. 7, eabk0919 (2021).
pubmed: 34757786 pmcid: 8580302 doi: 10.1126/sciadv.abk0919
Lv, X. et al. Fe
doi: 10.1016/j.nanoen.2017.01.001
Song, G. et al. High-spin state Fe(III) doped TiO
doi: 10.1016/j.apcatb.2021.120809
Schichtl, Z. G. et al. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Energy Mater. 5, 3863–3875 (2022).
doi: 10.1021/acsaem.2c00377
Beranek, R. Selectivity of chemical conversions: do light-driven photoelectrocatalytic processes hold special promise? Angew. Chem. Int. Ed. Engl. 58, 16724–16729 (2019).
pubmed: 31502746 doi: 10.1002/anie.201908654
Jiang, Y. et al. Elevating photooxidation of methane to formaldehyde via TiO
pubmed: 35969152 doi: 10.1021/jacs.2c04884
Zhang, H. et al. Hydrogen-bond bridged water oxidation on {001} surfaces of anatase TiO
doi: 10.1021/acs.jpcc.6b11900
Barbieriková, Z., Dvoranová, D. & Brezová, V. Photoinduced transformation of glycerol in titania suspensions. (An EPR spin trapping study of radical intermediates). Catal. Today 313, 106–113 (2018).
doi: 10.1016/j.cattod.2017.12.005
Wang, J. et al. Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nat. Commun. 12, 6840 (2021).
pubmed: 34824262 pmcid: 8617048 doi: 10.1038/s41467-021-27240-5
Dai, X. et al. Sustainable co-synthesis of glycolic acid, formamides and formates from 1,3-dihydroxyacetone by a Cu/Al
pubmed: 30715789 doi: 10.1002/anie.201814050
Arco, M., Gutierrez, S., Martin, C. & Rives, V. FTIR study of isopropanol reactivity on calcined layered double hydroxides. Phys. Chem. Chem. Phys. 3, 119–126 (2001).
doi: 10.1039/b007282f
Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi
pubmed: 35352954 doi: 10.1021/jacs.2c00465
Zaki, M. I., Hasan, M. A. & Pasupulety, L. In situ FTIR spectroscopic study of 2-propanol adsorptive and catalytic interactions on metal-modified aluminas. Langmuir 17, 4025–4034 (2001).
doi: 10.1021/la001810r
Ochoa, J., Trevisanut, C., Millet, J.-M. M., Busca, G. & Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 117, 23908–23918 (2013).
doi: 10.1021/jp409831t
An, Z. et al. Pt
pubmed: 36115832 pmcid: 9482651 doi: 10.1038/s41467-022-33038-w
Würger, T. et al. Adsorption of acetone on rutile TiO
doi: 10.1021/acs.jpcc.8b04222
Meyer, K. A. E. & Suhm, M. A. Formic acid aggregation in 2D supersonic expansions probed by FTIR imaging. J. Chem. Phys. 147, 144305 (2017).
pubmed: 29031256 doi: 10.1063/1.4989544
Yan, Y. et al. Selective valorization of glycerol to formic acid on a BiVO
doi: 10.1021/acsami.2c20516
Xu, S. et al. Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid. Chem. Eng. J. 428, 132555 (2022).
doi: 10.1016/j.cej.2021.132555
Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).
pubmed: 32527828 doi: 10.1126/science.aaz8459
Zhao, B. et al. Bias-free solar-driven syngas production: a Fe
doi: 10.1002/ange.202213067
Xiao, S. et al. Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap tunable perovskite solar cells for efficient self-powered solar water splitting. J. Mater. Chem. A 5, 19091 (2017).
doi: 10.1039/C7TA06309A
Kim, J. et al. A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode. J. Mater. Chem. A 6, 1266 (2018).
doi: 10.1039/C7TA09134F
Peng, Y. et al. Integrating a semitransparent, fullerene-free organic solar cell in tandem with a BiVO
pubmed: 28636350 doi: 10.1021/acsami.7b04486
Varadhan, P., Fu, H.-C., Kao, Y.-C., Horng, R.-H. & He, J.-H. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019).
pubmed: 31754117 pmcid: 6872648 doi: 10.1038/s41467-019-12977-x
Fu, J. et al. Interface engineering of Ta
pubmed: 35132086 pmcid: 8821563 doi: 10.1038/s41467-022-28415-4
Feng, X. et al. Single-atomic-site platinum steers middle hydroxyl selective oxidation on amorphous/crystalline homojunction for photoelectrochemical glycerol oxidation coupled with hydrogen generation. Adv. Funct. Mater. 34, 2316238 (2024).
Lu, Y. et al. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO
pubmed: 38942757 pmcid: 11213950 doi: 10.1038/s41467-024-49662-7
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
doi: 10.1016/0927-0256(96)00008-0
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
doi: 10.1103/PhysRevB.50.17953
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).
doi: 10.1103/PhysRevLett.78.1396
Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO
doi: 10.1038/s41560-019-0374-6

Auteurs

Yang Liu (Y)

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.

Huishan Shang (H)

School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, 450001, Zhengzhou, P. R. China.

Bing Zhang (B)

School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, 450001, Zhengzhou, P. R. China.

Dongpeng Yan (D)

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China. yandp@bnu.edu.cn.

Xu Xiang (X)

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China. xiangxu@mail.buct.edu.cn.
Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China. xiangxu@mail.buct.edu.cn.

Classifications MeSH