Surface fluorination of BiVO
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
17 Sep 2024
17 Sep 2024
Historique:
received:
10
02
2024
accepted:
28
08
2024
medline:
18
9
2024
pubmed:
18
9
2024
entrez:
17
9
2024
Statut:
epublish
Résumé
The C-C bond cleavage of biomass-derived glycerol to generate value-added C1 products remains challenging owing to its slow kinetics. We propose a surface fluorination strategy to construct dynamic dual hydrogen bonds on a semiconducting BiVO
Identifiants
pubmed: 39289360
doi: 10.1038/s41467-024-52161-4
pii: 10.1038/s41467-024-52161-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8155Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22288102, 21978021
Informations de copyright
© 2024. The Author(s).
Références
Luna, P. D. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).
pubmed: 31023896
doi: 10.1126/science.aav3506
Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).
doi: 10.1038/natrevmats.2015.10
Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).
pubmed: 28945407
doi: 10.1021/acs.accounts.6b00615
Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo‑, photo‑, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).
doi: 10.1021/acscatal.8b01317
Zhang, Z. & Huber, G. W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 47, 1351–1390 (2018).
pubmed: 29297525
doi: 10.1039/C7CS00213K
Luo, H. et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11, 2101180 (2021).
doi: 10.1002/aenm.202101180
Liu, B. & Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C 115, 19702–19709 (2011).
doi: 10.1021/jp202923w
Li, Y., Wei, X., Chen, L., Shi, J. & He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019).
pubmed: 31767871
pmcid: 6877572
doi: 10.1038/s41467-019-13375-z
Han, X. et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo
doi: 10.1021/acscatal.0c01498
Wu, J. et al. Steering the glycerol electro-reforming selectivity via cation-intermediate interactions. Angew. Chem. Int. Ed. Engl. 61, e202113362 (2022).
pubmed: 34957665
doi: 10.1002/anie.202113362
He, Z. et al. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 13, 3777 (2022).
pubmed: 35773257
pmcid: 9246976
doi: 10.1038/s41467-022-31484-0
Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO
pubmed: 34322983
doi: 10.1002/anie.202107510
Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat. Commun. 14, 5621 (2023).
pubmed: 37699949
pmcid: 10497620
doi: 10.1038/s41467-023-41497-y
Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).
pubmed: 28855502
pmcid: 5577226
doi: 10.1038/s41467-017-00420-y
Tang, D. et al. A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. J. Energy Chem. 77, 80–118 (2023).
doi: 10.1016/j.jechem.2022.10.038
Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).
pubmed: 30992441
pmcid: 6467901
doi: 10.1038/s41467-019-09788-5
Ouyang, J. et al. WO
doi: 10.1021/acsami.2c04608
Lin, C. et al. Photo-electrochemical glycerol conversion over a Mie scattering effect enhanced porous BiVO
doi: 10.1002/adma.202209955
Lee, D. K. & Choi, K.-S. Enhancing long-term photostability of BiVO
doi: 10.1038/s41560-017-0057-0
Liu, Y., Wang, M., Zhang, B., Yan, D. & Xiang, X. Mediating the oxidizing capability of surface-bound hydroxyl radicals produced by photoelectrochemical water oxidation to convert glycerol into dihydroxyacetone. ACS Catal. 12, 6946–6957 (2022).
doi: 10.1021/acscatal.2c01319
Jiao, X. et al. Photocatalytic conversion of waste plastics into C
pubmed: 32003512
doi: 10.1002/anie.201915766
Sheng, H. et al. Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study. Angew. Chem. Int. Ed. Engl. 54, 5905–5909 (2015).
pubmed: 25809908
doi: 10.1002/anie.201412035
Kim, T. W. & Choi, K.-S. Nanoporous BiVO
pubmed: 24526312
doi: 10.1126/science.1246913
Zhai, S., Teng, F., Yang, X., Sun, P. & Liang, S. A straightforward NH
doi: 10.1016/j.colsurfa.2020.124496
Zhang, B., Chou, L. & Bi, Y. Tuning surface electronegativity of BiVO
doi: 10.1016/j.apcatb.2019.118267
Lu, Y. et al. Boosting charge transport in BiVO
doi: 10.1002/adma.202108178
Nguyen, T. D. et al. Co
pubmed: 35530596
pmcid: 9069272
doi: 10.1039/C9RA04188E
Ke, D., Peng, T., Ma, L., Cai, P. & Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO
pubmed: 19466799
doi: 10.1021/ic900064m
Minella, M. et al. Effect of fluorination on the surface properties of titania P25 powder: an FTIR study. Langmuir 26, 2521–2527 (2010).
pubmed: 19877699
doi: 10.1021/la902807g
Kou, S. et al. Photocatalytic activity and photocorrosion of oriented BiVO
doi: 10.1039/D0CY00920B
Bu, Y. et al. Optimization of the photo-electrochemical performance of Mo-doped BiVO
doi: 10.1002/admi.201601235
Whitcher, T. J. et al. Enhancement of the work function of indium tin oxide by surface modification using caesium fluoride. J. Phys. D Appl. Phys. 46, 475102 (2013).
doi: 10.1088/0022-3727/46/47/475102
Tian, C. M. et al. Electronic structure, optical properties, and photoelectrochemical activity of Sn-Doped Fe
doi: 10.1021/acs.jpcc.0c02875
Liu, S., Yin, K., Ren, W., Cheng, B. & Yu, J. Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. J. Mater. Chem. 22, 17759 (2012).
doi: 10.1039/c2jm33337f
Huang, G. & Zhu, Y. Enhanced photocatalytic activity of ZnWO
doi: 10.1021/jp071987v
Gao, R.-T. & Wang, L. Stable cocatalyst-free BiVO
pubmed: 32888248
doi: 10.1002/anie.202010908
Yin, J. et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 142, 18378–18386 (2020).
pubmed: 32955265
doi: 10.1021/jacs.0c05050
Ding, L. et al. The vital role of surface Brönsted acid/base sites for the photocatalytic formation of free ·OH radicals. Appl. Catal. B 266, 118634 (2020).
doi: 10.1016/j.apcatb.2020.118634
Seki, T. et al. The bending mode of water: a powerful probe for hydrogen bond structure of aqueous systems. J. Phys. Chem. Lett. 11, 8459–8469 (2020).
pubmed: 32931284
pmcid: 7584361
doi: 10.1021/acs.jpclett.0c01259
Cheng, W. R., Xi, S. B., Wu, Z. P., Luan, D. Y. & Lou, X. W. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci. Adv. 7, eabk0919 (2021).
pubmed: 34757786
pmcid: 8580302
doi: 10.1126/sciadv.abk0919
Lv, X. et al. Fe
doi: 10.1016/j.nanoen.2017.01.001
Song, G. et al. High-spin state Fe(III) doped TiO
doi: 10.1016/j.apcatb.2021.120809
Schichtl, Z. G. et al. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Energy Mater. 5, 3863–3875 (2022).
doi: 10.1021/acsaem.2c00377
Beranek, R. Selectivity of chemical conversions: do light-driven photoelectrocatalytic processes hold special promise? Angew. Chem. Int. Ed. Engl. 58, 16724–16729 (2019).
pubmed: 31502746
doi: 10.1002/anie.201908654
Jiang, Y. et al. Elevating photooxidation of methane to formaldehyde via TiO
pubmed: 35969152
doi: 10.1021/jacs.2c04884
Zhang, H. et al. Hydrogen-bond bridged water oxidation on {001} surfaces of anatase TiO
doi: 10.1021/acs.jpcc.6b11900
Barbieriková, Z., Dvoranová, D. & Brezová, V. Photoinduced transformation of glycerol in titania suspensions. (An EPR spin trapping study of radical intermediates). Catal. Today 313, 106–113 (2018).
doi: 10.1016/j.cattod.2017.12.005
Wang, J. et al. Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nat. Commun. 12, 6840 (2021).
pubmed: 34824262
pmcid: 8617048
doi: 10.1038/s41467-021-27240-5
Dai, X. et al. Sustainable co-synthesis of glycolic acid, formamides and formates from 1,3-dihydroxyacetone by a Cu/Al
pubmed: 30715789
doi: 10.1002/anie.201814050
Arco, M., Gutierrez, S., Martin, C. & Rives, V. FTIR study of isopropanol reactivity on calcined layered double hydroxides. Phys. Chem. Chem. Phys. 3, 119–126 (2001).
doi: 10.1039/b007282f
Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi
pubmed: 35352954
doi: 10.1021/jacs.2c00465
Zaki, M. I., Hasan, M. A. & Pasupulety, L. In situ FTIR spectroscopic study of 2-propanol adsorptive and catalytic interactions on metal-modified aluminas. Langmuir 17, 4025–4034 (2001).
doi: 10.1021/la001810r
Ochoa, J., Trevisanut, C., Millet, J.-M. M., Busca, G. & Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 117, 23908–23918 (2013).
doi: 10.1021/jp409831t
An, Z. et al. Pt
pubmed: 36115832
pmcid: 9482651
doi: 10.1038/s41467-022-33038-w
Würger, T. et al. Adsorption of acetone on rutile TiO
doi: 10.1021/acs.jpcc.8b04222
Meyer, K. A. E. & Suhm, M. A. Formic acid aggregation in 2D supersonic expansions probed by FTIR imaging. J. Chem. Phys. 147, 144305 (2017).
pubmed: 29031256
doi: 10.1063/1.4989544
Yan, Y. et al. Selective valorization of glycerol to formic acid on a BiVO
doi: 10.1021/acsami.2c20516
Xu, S. et al. Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid. Chem. Eng. J. 428, 132555 (2022).
doi: 10.1016/j.cej.2021.132555
Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).
pubmed: 32527828
doi: 10.1126/science.aaz8459
Zhao, B. et al. Bias-free solar-driven syngas production: a Fe
doi: 10.1002/ange.202213067
Xiao, S. et al. Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap tunable perovskite solar cells for efficient self-powered solar water splitting. J. Mater. Chem. A 5, 19091 (2017).
doi: 10.1039/C7TA06309A
Kim, J. et al. A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode. J. Mater. Chem. A 6, 1266 (2018).
doi: 10.1039/C7TA09134F
Peng, Y. et al. Integrating a semitransparent, fullerene-free organic solar cell in tandem with a BiVO
pubmed: 28636350
doi: 10.1021/acsami.7b04486
Varadhan, P., Fu, H.-C., Kao, Y.-C., Horng, R.-H. & He, J.-H. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019).
pubmed: 31754117
pmcid: 6872648
doi: 10.1038/s41467-019-12977-x
Fu, J. et al. Interface engineering of Ta
pubmed: 35132086
pmcid: 8821563
doi: 10.1038/s41467-022-28415-4
Feng, X. et al. Single-atomic-site platinum steers middle hydroxyl selective oxidation on amorphous/crystalline homojunction for photoelectrochemical glycerol oxidation coupled with hydrogen generation. Adv. Funct. Mater. 34, 2316238 (2024).
Lu, Y. et al. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO
pubmed: 38942757
pmcid: 11213950
doi: 10.1038/s41467-024-49662-7
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
doi: 10.1016/0927-0256(96)00008-0
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
doi: 10.1103/PhysRevB.50.17953
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).
doi: 10.1103/PhysRevLett.78.1396
Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO
doi: 10.1038/s41560-019-0374-6