Identifying individual brain development using multimodality brain network.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
17 Sep 2024
17 Sep 2024
Historique:
received:
01
03
2024
accepted:
10
09
2024
medline:
18
9
2024
pubmed:
18
9
2024
entrez:
17
9
2024
Statut:
epublish
Résumé
The cortical development of our brains is in a hierarchical manner and promotes the emergence of large-scale functional hierarchy. However, under interindividual heterogenicity, how the spatiotemporal features of brain networks reflect brain development and mental health remains unclear. Here we collect both resting-state electroencephalography and functional magnetic resonance imaging data from the Child Mind Institute Biobank to demonstrate that during brain growth, the global dynamic patterns of brain states become more active and the dominant networks shift from sensory to higher-level networks; the individual functional network patterns become more similar to that of adults and their spatial coupling tends to be invariable. Furthermore, the properties of multimodality brain networks are sufficiently robust to identify healthy brain age and mental disorders at specific ages. Therefore, multimodality brain networks provide new insights into the functional development of the brain and a more reliable and reasonable approach for age prediction and individual diagnosis.
Identifiants
pubmed: 39289448
doi: 10.1038/s42003-024-06876-1
pii: 10.1038/s42003-024-06876-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1163Informations de copyright
© 2024. The Author(s).
Références
Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).
pubmed: 34270921
pmcid: 8448958
Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137 (2018).
pubmed: 29449712
pmcid: 5987539
Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor-association cortical axis in youth. Nat. Neurosci. 26, 638–649 (2023).
pubmed: 36973514
pmcid: 10406167
Larivière, S. et al. Multiscale structure-function gradients in the neonatal connectome. Cereb. Cortex 30, 47–58 (2020).
pubmed: 31220215
Xia, Y. et al. Development of functional connectome gradients during childhood and adolescence. Sci. Bull. (Beijing) 67, 1049–1061 (2022).
pubmed: 36546249
Baum, G. L. et al. Development of structure-function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).
pubmed: 31874926
Larsen, B. et al. A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. Sci. Adv. 8, eabj8750 (2022).
pubmed: 35119918
pmcid: 8816330
Genon, S., Eickhoff, S. B. & Kharabian, S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 23, 307–318 (2022).
pubmed: 35365814
Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).
pubmed: 35388223
pmcid: 9021021
Grydeland, H. et al. Waves of maturation and senescence in micro-structural mri markers of human cortical myelination over the lifespan. Cereb. Cortex 29, 1369–1381 (2019).
pubmed: 30590439
Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022).
pubmed: 35383335
pmcid: 10040206
Vasung, L. et al. Association between quantitative MR markers of cortical evolving organization and gene expression during human prenatal brain development. Cereb. Cortex 31, 3610–3621 (2021).
pubmed: 33836056
pmcid: 8258434
Doucet, G. E. et al. Multivariate patterns of brain-behavior associations across the adult lifespan. Aging (Albany NY) 14, 161–194 (2022).
pubmed: 35013005
Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
pubmed: 26457551
pmcid: 5008686
Rashid, B. & Calhoun, V. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. 41, 3468–3535 (2020).
pubmed: 32374075
pmcid: 7375108
Yu, Q. et al. Differential white matter maturation from birth to 8 years of age. Cereb. Cortex 30, 2673–2689 (2020).
pubmed: 31819951
Fan, H. et al. Decoding anxiety-impulsivity subtypes in preadolescent internalising disorders: findings from the adolescent brain cognitive development study. Br. J. Psychiatry 223, 542–554 (2023).
pubmed: 37730654
Hoogman, M. et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am. J. Psychiatry 176, 531–542 (2019).
pubmed: 31014101
pmcid: 6879185
Kaufmann, T. et al. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515 (2017).
pubmed: 28218917
Connolly, C. G. et al. Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J. Affect Disord. 207, 86–94 (2017).
pubmed: 27716542
Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 180, 577–593 (2018).
pubmed: 29196270
Gui, P. et al. Assessing the depth of language processing in patients with disorders of consciousness. Nat. Neurosci. 23, 761–770 (2020).
pubmed: 32451482
Britz, J., Van De Ville, D. & Michel, C. M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52, 1162–1170 (2010).
pubmed: 20188188
Lehmann, D. et al. EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res. 138, 141–156 (2005).
pubmed: 15766637
Liebrand, M. et al. EEG microstate D as psychosis-specific correlate in adolescents and young adults with clinical high risk for psychosis and first-episode psychosis. Schizophr. Res. 264, 49–57 (2023).
pubmed: 38096659
Takarae, Y. et al. EEG microstates suggest atypical resting-state network activity in high-functioning children and adolescents with autism spectrum development. Dev. Sci. 25, e13231 (2022).
pubmed: 35005839
Jia, H. & Yu, D. Aberrant intrinsic brain activity in patients with autism spectrum disorder: insights from EEG microstates. Brain Topogr. 32, 295–303 (2019).
pubmed: 30382452
He, Y. et al. Abnormalities in electroencephalographic microstates among adolescents with first episode major depressive disorder. Front Psychiatry 12, 775156 (2021).
pubmed: 34975577
pmcid: 8718790
Zanesco, A. P., King, B. G., Skwara, A. C. & Saron, C. D. Within and between-person correlates of the temporal dynamics of resting EEG microstates. Neuroimage 211, 116631 (2020).
pubmed: 32062082
van Blooijs, D. et al. Developmental trajectory of transmission speed in the human brain. Nat. Neurosci. 26, 537–541 (2023).
pubmed: 36894655
pmcid: 10076215
Thomason, M. E. et al. Resting-state fMRI can reliably map neural networks in children. Neuroimage 55, 165–175 (2011).
pubmed: 21134471
Le, T. M., Huang, A. S., O’Rawe, J. & Leung, H. C. Functional neural network configuration in late childhood varies by age and cognitive state. Dev. Cogn. Neurosci. 45, 100862 (2020).
pubmed: 32920279
pmcid: 7494462
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099
pmcid: 5098630
Fan, F. et al. Development of the default-mode network during childhood and adolescence: a longitudinal resting-state fMRI study. Neuroimage 226, 117581 (2021).
pubmed: 33221440
Dennis, E. L., Gotlib, I. H., Thompson, P. M. & Thomason, M. E. Anxiety modulates insula recruitment in resting-state functional magnetic resonance imaging in youth and adults. Brain Connect. 1, 245–254 (2011).
pubmed: 22433052
pmcid: 3621677
Lin, H. Y., Tseng, W. Y., Lai, M. C., Matsuo, K. & Gau, S. S. Altered resting-state frontoparietal control network in children with attention-deficit/hyperactivity disorder. J. Int. Neuropsychol. Soc. 21, 271–284 (2015).
pubmed: 25928822
Nunes, A. S., Peatfield, N., Vakorin, V. & Doesburg, S. M. Idiosyncratic organization of cortical networks in autism spectrum disorder. Neuroimage 190, 182–190 (2019).
pubmed: 29355768
Haghighat, H., Mirzarezaee, M., Araabi, B. N. & Khadem, A. Functional networks abnormalities in autism spectrum disorder: age-related hypo and hyper connectivity. Brain Topogr. 34, 306–322 (2021).
pubmed: 33905003
Soman, S. M., Vijayakumar, N., Ball, G., Hyde, C. & Silk, T. J. Longitudinal changes of resting-state networks in children with attention-deficit/hyperactivity disorder and typically developing children. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 514–521 (2023).
pubmed: 35033687
Marchitelli, R. et al. Dynamic functional connectivity in adolescence-onset major depression: relationships with severity and symptom dimensions. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 385–396 (2022).
pubmed: 34051395
Lei, T. et al. Progressive stabilization of brain network dynamics during childhood and adolescence. Cereb. Cortex 32, 1024–1039 (2022).
pubmed: 34378030
Cole, J. H. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol. Aging 92, 34–42 (2020).
pubmed: 32380363
pmcid: 7280786
Zhang, X. et al. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol. Med. 53, 6194–6204 (2023).
pubmed: 36330833
Yang, H. et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Mol. Psychiatry 26, 7363–7371 (2021).
pubmed: 34385597
pmcid: 8873016
Yuan, D. et al. Network analysis of cold cognition and depression in middle-aged and elder population: the moderation of grandparenting. Front. Public Health 11, 1204977 (2023).
pubmed: 37674685
pmcid: 10479032
Qian, X. et al. Large-scale brain functional network topology disruptions underlie symptom heterogeneity in children with attention-deficit/hyperactivity disorder. Neuroimage Clin. 21, 101600 (2019).
pubmed: 30472167
Cortese, S. et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry 169, 1038–1055 (2012).
pubmed: 22983386
Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013).
pubmed: 23803651
pmcid: 3951904
Ouyang, M. et al. Flattened structural network changes and association of hyperconnectivity with symptom severity in 2-7-year-old children with autism. Front. Neurosci. 15, 757838 (2021).
pubmed: 35237118
Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017).
pubmed: 29257126
pmcid: 5735921
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2, 125–141 (2012).
pubmed: 22642651
Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 (2001).
pubmed: 11559959
pmcid: 6871952
Beltre, G. & Mendez, M. D. (eds) Child Development. In StatPearls [Internet]. Copyright © 2023 (Treasure Island (FL): StatPearls Publishing LLC, 2024).