SolBeePop
BeeGUTS
Pesticide risk assessment
Population model
Solitary bees
Trait‐based approach
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
18 Sep 2024
18 Sep 2024
Historique:
revised:
10
07
2024
received:
17
04
2024
accepted:
06
08
2024
medline:
18
9
2024
pubmed:
18
9
2024
entrez:
18
9
2024
Statut:
aheadofprint
Résumé
In agricultural landscapes, solitary bees occur in a large diversity of species and are important for crop and wildflower pollination. They are distinguished from honey bees and bumble bees by their solitary lifestyle as well as different nesting strategies, phenologies, and floral preferences. Their ecological traits and presence in agricultural landscapes imply potential exposure to pesticides and suggest a need to conduct ecological risk assessments for solitary bees. However, assessing risks to the large diversity of managed and wild bees across landscapes and regions poses a formidable challenge. Population models provide tools to estimate potential population-level effects of pesticide exposures, can support field study design and interpretation, and can be applied to expand study data to untested conditions. We present a population model for solitary bees, SolBeePop
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Bayer AG
Organisme : Sumitomo Chemical
Organisme : Syngenta Crop Protection AG
Informations de copyright
© 2024 SETAC.
Références
Allen‐Perkins, A., Magrach, A., Dainese, M., Garibaldi, L. A., Kleijn, D., Rader, R., Reilly, J. R., Winfree, R., Lundin, O., McGrady, C. M., Brittain, C., Biddinger, D. J., Artz, D. R., Elle, E., Hoffman, G., Ellis, J. D., Daniels, J., Gibbs, J., Campbell, J. W., … Bartomeus, I. (2021). CropPol: A dynamic, open and global database on crop pollination. Ecology, 103(3), Article e3614. https://doi.org/10.1002/ecy.3614
Arena, M., & Sgolastra, F. (2014). A meta‐analysis comparing the sensitivity of bees to pesticides. Ecotoxicology, 23(3), 324–334. https://doi.org/10.1007/s10646-014-1190-1
Baas, J., Goussen, B., Miles, M., Preuss, T. G., & Roessink, I. (2022). BeeGUTS—A TKTD model for the interpretation and integration of acute and chronic honey bee tests. Environmental Toxicology and Chemistry, 41(9), 2193–2201. https://doi.org/10.1002/etc.5423
Baas, J., Goussen, B., Taenzler, V., Roeben, V., Miles, M., Preuss, T. G., van den Berg, S., & Roessink, I. (2024). Comparing sensitivity of different bee species to pesticides: A TKTD modeling approach. Environmental Toxicology and Chemistry, 43, 1431–1441. https://doi.org/10.1002/etc.5871
Batra, S. W. T. (1970). Behavior of the alkali bee, Nomia melanderi, within the nest (Hymenoptera: Halictidae). Annals of the Entomological Society of America, 63(2), 400–406. https://doi.org/10.1093/aesa/63.2.400
Bohart, G. E., & Cross, E. A. (1955). Time relationships in the nest construction and life cycle of the alkali bee. Annals of the Entomological Society of America, 48(5), 403–406. https://doi.org/10.1093/aesa/48.5.403
Bosch, J., Sgolastra, F., & Kemp, W. P. (2008). Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In R. James & T. L. Pitts‐Singer (Eds.), Bee pollination in agricultural ecosystems (pp. 83–104). Oxford University Press.
Cane, J. H. (2008). A native ground‐nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie, 39(3), 315–323. https://doi.org/10.1051/apido:2008013
Danforth, B. N., Minckley, R. L., & Neff, J. L. (2019). The solitary bees. Biology, evolution, conservation. Princeton University Press.
EFSA Panel on Plant Protection Products and Their Residues, Ockleford, C., Adriaanse, P., Berny, P., Brock, T., Duquesne, S., Grilli, S., Hernandez‐Jerez, A. F., Bennekou, S. H., Klein, M., Kuhl, T., Laskowski, R., Machera, K., Pelkonen, O., Pieper, S., Smith, R. H., Stemmer, M., Sundh, I., Tiktak, A., … Teodorovic, I. (2018a). Scientific opinion on the state of the art of toxicokinetic/toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA Journal, 16(8), Article e05377. https://doi.org/10.2903/j.efsa.2018.5377
EFSA Panel on Plant Protection Products and Their Residues, Ockleford, C., Adriaanse, P., Berny, P., Brock, T., Duquesne, S., Grilli, S., Hernandez‐Jerez, A. F., Bennekou, S. H., Klein, M., Kuhl, T., Laskowski, R., Machera, K., Pelkonen, O., Pieper, S., Stemmer, M., Sundh, I., Teodorovic, I., Tiktak, A., … Smith, R. H. (2018b). Scientific opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA Journal, 16(2), Article e05125. https://doi.org/10.2903/j.efsa.2018.5125
European Food Safety Authority. (2013). Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal, 11(7), Article 3295. https://doi.org/10.2903/j.efsa.2013.3295
European Food Safety Authority. (2023). Revised guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal, 21(5), Article e07989. https://doi.org/10.2903/j.efsa.2023.7989
European Food Safety Authority, Aagaard, A., Berny, P., Chaton, P.‐F., Antia, A. L., McVey, E., Arena, M., Fait, G., Ippolito, A., Linguadoca, A., Sharp, R., Theobald, A., & Brock, T. (2023). Risk assessment for birds and mammals. EFSA Journal, 21(2), Article e07790. https://doi.org/10.2903/j.efsa.2023.7790
Everaars, J., Settele, J., & Dormann, C. F. (2018). Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual‐based model. PLoS One, 13(2), Article e0188269. https://doi.org/10.1371/journal.pone.0188269
Franke, L., Klein, O., Knäbe, S., & Pilling, E. (2023). Sensitivity of a semi‐field study design with solitary bees (Osmia bicornis). In J. Pistorius & T. Steeger (Eds.), Hazards of pesticides to bees, 15th International Symposium of the ICP‐PR Bee Protection Group, Proceedings; 18th–21st October 2022, York (United Kingdom) (p. 19). Julius Kühn‐Institut. https://doi.org/10.5073/20230717-142917-0
Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., Deangelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe‐Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M. S., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020). The ODD protocol for describing agent‐based and other simulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial Societies and Social Simulation, 23(2), Article 7. http://eprints.bournemouth.ac.uk/33918/
Heard, M. S., Baas, J., Dorne, J.‐L., Lahive, E., Robinson, A. G., Rortais, A., Spurgeon, D. J., Svendsen, C., & Hesketh, H. (2017). Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species. Science of the Total Environment, 578, 357–365. https://doi.org/10.1016/j.scitotenv.2016.10.180
Hinarejos, S., Abbott, J., Alix, A., Bibek, S., Cabrera, A., Joseph, T., O'Neill, B., Singh, R., & Thompson, H. (2019). Non‐Apis bee exposure workshop: Industry participants’ view. Environmental Entomology, 48(1), 49–52. https://doi.org/10.1093/ee/nvy138
Hladik, M. L., Vandever, M., & Smalling, K. L. (2016). Exposure of native bees foraging in an agricultural landscape to current‐use pesticides. Science of the Total Environment, 542, 469–477. https://doi.org/10.1016/j.scitotenv.2015.10.077
Hurd, P. D., Linsley, G. E., & Michelbacher, A. E. (1974). Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated curcubits in California (Hymenoptera: Apoidea) (Smithsonian Contributions to Zoology No. 168). Smithsonian Institution Press.
Jager, T., Albert, C., Preuss, T. G., & Ashauer, R. (2011). General unified threshold model of survival—A toxicokinetic–toxicodynamic framework for ecotoxicology. Environmental Science & Technology, 45(7), 2529–2540. https://doi.org/10.1021/es103092a
Jager, T., & Ashauer, R. (2018). Modelling survival under chemical stress: A comprehensive guide to the GUTS framework. https://leanpub.com/guts_book
Johansen, C. A., Mayer, D. F., & Eves, J. D. (1978). Biology and management of the alkali bee, Nomia melanderi Cockrell (Hymenoptera: Halictidae). Melanderia, 28, 25‐46.
Jütte, T., Wernecke, A., Klaus, F., Pistorius, J., & Dietzsch, A. C. (2023). Risk assessment requires several bee species to address species‐specific sensitivity to insecticides at field‐realistic concentrations. Scientific Reports, 13(1), Article 22533. https://doi.org/10.1038/s41598-023-48818-7
Knapp, J. L., Nicholson, C. C., Jonsson, O., de Miranda, J. R., & Rundlöf, M. (2023). Ecological traits interact with landscape context to determine bees’ pesticide risk. Nature Ecology & Evolution, 7(4), 547–556. https://doi.org/10.1038/s41559-023-01990-5
Kopit, A. M., & Pitts‐Singer, T. L. (2018). Routes of pesticide exposure in solitary, cavity‐nesting bees. Environmental Entomology, 47(3), 499–510. https://doi.org/10.1093/ee/nvy034
Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N., & Greenleaf, S. (2009). Modelling pollination services across agricultural landscapes. Annals of Botany, 103(9), 1589–1600. https://doi.org/10.1093/aob/mcp069
Lonsdorf, E. V., Rundlöf, M., Nicholson, C. C., & Williams, N. M. (2024). A spatially explicit model of landscape pesticide exposure to bees: Development, exploration, and evaluation. Science of the Total Environment, 908, Article 168146. https://doi.org/10.1016/j.scitotenv.2023.168146
Mathewson, J. A. (1968). Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society, 41(2), 255–261.
Michener, C. D. (2007). The bees of the world (2nd ed.). Johns Hopkins University Press.
Mokkapati, J. S., Bednarska, A. J., Choczyński, M., & Laskowski, R. (2022). Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis. Environmental Pollution, 293, Article 118610. https://doi.org/10.1016/j.envpol.2021.118610
National Research Council. (2013). Assessing risks to endangered and threatened species from pesticides. National Academies.
Organisation for Economic Co‐operation and Development. (1998). Test No. 214: Honeybees, acute contact toxicity test. OECD guidelines for the testing of chemicals. https://www.oecd-ilibrary.org/content/publication/9789264070189-en
Organisation for Economic Co‐operation and Development. (2016). Guidance document on honey bee (Apis mellifera) larval toxicity test, repeated exposure (Series on Testing and Assessment No. 239). https://one.oecd.org/document/ENV/JM/MONO(2016)34/en/pdf
Qu, H., & Drummond, F. (2018). Simulation‐based modeling of wild blueberry pollination. Computers and Electronics in Agriculture, 144, 94–101. https://doi.org/10.1016/j.compag.2017.11.003
Raimondo, S., Schmolke, A., Pollesch, N., Accolla, C., Galic, N., Moore, A., Vaugeois, M., Rueda‐Cediel, P., Kanarek, A., Awkerman, J., & Forbes, V. (2021). Pop‐guide: Population modeling guidance, use, interpretation, and development for ecological risk assessment. Integrated Environmental Assessment and Management, 17(4), 767–784. https://doi.org/10.1002/ieam.4377
Rands, S. A. (2014). Landscape fragmentation and pollinator movement within agricultural environments: A modelling framework for exploring foraging and movement ecology. PeerJ, 2, Article e269. https://doi.org/10.7717/peerj.269
Rodger, J. G., Bennett, J. M., Razanajatovo, M., Knight, T. M., Kleunen, M., van Ashman, T.‐L., Steets, J. A., Hui, C., Arceo‐Gómez, G., Burd, M., Burkle, L. A., Burns, J. H., Durka, W., Freitas, L., Kemp, J. E., Li, J., Pauw, A., Vamosi, J. C., Wolowski, M., & Ellis, A. G. (2021). Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 7, Article eabd3524. https://doi.org/10.1126/sciadv.abd3524
Schmolke, A. (2024). SolBeePop_ecotox: Extension of SolBeePop with the representation of exposures and effects (Version 2.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.13254386
Schmolke, A., Galic, N., Feken, M., Thompson, H., Sgolastra, F., Pitts‐Singer, T., Elston, C., Pamminger, T., & Hinarejos, S. (2021). Assessment of the vulnerability to pesticide exposures across bee species. Environmental Toxicology and Chemistry, 40(9), 2640–2651. https://doi.org/10.1002/etc.5150
Schmolke, A., Galic, N., & Hinarejos, S. (2023). SolBeePop: A model of solitary bee populations in agricultural landscapes. Journal of Applied Ecology, 60, 2573–2585. https://doi.org/10.1111/1365-2664.14541
Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: A strategy for the future. Trends in Ecology & Evolution, 25(8), 479–486. https://doi.org/10.1016/j.tree.2010.05.001
Sgolastra, F., Hinarejos, S., Pitts‐Singer, T. L., Boyle, N. K., Joseph, T., Lūckmann, J., Raine, N. E., Singh, R., Williams, N. M., & Bosch, J. (2019). Pesticide exposure assessment paradigm for solitary bees. Environmental Entomology, 48(1), 22–35. https://doi.org/10.1093/ee/nvy105
Thompson, H. M., & Pamminger, T. (2019). Are honeybees suitable surrogates for use in pesticide risk assessment for non‐Apis bees? Pest Management Science, 75(10), 2549–2557. https://doi.org/10.1002/ps.5494
Uhl, P., & Brühl, C. A. (2019). The impact of pesticides on flower‐visiting insects: A review with regard to European risk assessment. Environmental Toxicology and Chemistry, 38(11), 2355–2370. https://doi.org/10.1002/etc.4572
Ulbrich, K., & Seidelmann, K. (2001). Modeling population dynamics of solitary bees in relation to habitat quality. Web Ecology, 2(1), 57–64. https://doi.org/10.5194/we-2-57-2001
US Environmental Protection Agency, Pest Management Regulatory Agency Canada, & California Department of Pesticide Regulation. (2012). White paper in support of the proposed risk assessment process for bees. US Environmental Protection Agency. https://www.regulations.gov/document/EPA-HQ-OPP-2012-0543-0004
US Environmental Protection Agency, Pest Management Regulatory Agency Canada, & California Department of Pesticide Regulation. (2014). Guidance for assessing pesticide risks to bees. https://www.epa.gov/pollinator-protection/pollinator-risk-assessment-guidance
van den Berg, F., Tiktak, A., Boesten, J. J. T. I., & van der Linden, A. M. A. (2016). PEARL model for pesticide behaviour and emissions in soil–plant systems: Description of processes (WOt‐Technical Report 61). Wageningen University and Research. https://research.wur.nl/en/publications/pearl-model-for-pesticide-behaviour-and-emissions-in-soil-plant-s
Ward, L. T., Hladik, M. L., Guzman, A., Winsemius, S., Bautista, A., Kremen, C., & Mills, N. J. (2022). Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Science of the Total Environment, 831, Article 154697. https://doi.org/10.1016/j.scitotenv.2022.154697
Willis Chan, D. S., Prosser, R. S., Rodríguez‐Gil, J. L., & Raine, N. E. (2019). Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground‐nesting bees from systemic insecticides in agricultural soil. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-47805-1