Why do we study sphingolipids?

Ceramide Evolution Metabolic pathways Sphingolipids Sphingosine 1-phosphate

Journal

Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720

Informations de publication

Date de publication:
19 Sep 2024
Historique:
received: 22 08 2024
accepted: 10 09 2024
revised: 22 08 2024
medline: 19 9 2024
pubmed: 19 9 2024
entrez: 18 9 2024
Statut: aheadofprint

Résumé

Research on sphingolipids has proliferated exponentially over the past couple of decades, as exemplified in the findings reported at the International Leopoldina Symposium on Lipid Signaling held in Frankfurt in late 2023. Most researchers in the field study how sphingolipids function in regulating a variety of cellular processes and, in particular, how they are dysregulated in numerous human diseases; however, I now propose that we implement a more holistic research program in our study of sphingolipids, which embraces a sense of awe and wonder at the complexities and beauty of sphingolipids and of sphingolipid metabolism. I will outline the chemical complexity of sphingolipids, their modes of interaction within the lipid bilayer, and their biosynthetic pathways. I will then briefly touch upon the ability of current neo-Darwinian mechanisms to explain the emergence of both sphingolipids and of the complex pathways that generate them. Although such discussion is normally considered taboo in biological circles, I nevertheless submit that in-depth analysis of the minutiae of metabolic pathways, such as those of the sphingolipid biosynthetic pathway, raises challenges to current neo-Darwinian mechanisms that should not be shunned or ignored.

Identifiants

pubmed: 39294442
doi: 10.1007/s00424-024-03020-0
pii: 10.1007/s00424-024-03020-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Pfeilschifter J, Gulbins E (2024) Tribute to Andrea Huwiler (1966–2023). Pflügers Arch - Eur J Physiol 1–2. https://doi.org/10.1007/s00424-024-02958-5
Huwiler A (2023) Topical collection: new insights on sphingolipids in health and disease. Int J Mol Sci 24:9528. https://doi.org/10.3390/ijms24119528
doi: 10.3390/ijms24119528 pubmed: 37298478 pmcid: 10254020
Velazquez FN, Luberto C, Canals D, Hannun YA (2024) Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans. https://doi.org/10.1042/bst20231442
doi: 10.1042/bst20231442 pubmed: 39101614
Santos TCB, Dingjan T, Futerman AH (2022) The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 596:2345–2363. https://doi.org/10.1002/1873-3468.14457
doi: 10.1002/1873-3468.14457 pubmed: 35899376
Dingjan T, Futerman AH (2021) The role of the ‘sphingoid motif’ in shaping the molecular interactions of sphingolipids in biomembranes. Biochim Biophys Acta (BBA) - Biomembr 1863:183701. https://doi.org/10.1016/j.bbamem.2021.183701
doi: 10.1016/j.bbamem.2021.183701
Low M, Ferguson M, Futerman A, Silman I (1986) Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem Sci 11:212–215. https://doi.org/10.1016/0968-0004(86)90009-5
doi: 10.1016/0968-0004(86)90009-5
Pagano RE, Sleight RG (1985) Defining lipid transport pathways in animal cells. Science 229:1051–1057
doi: 10.1126/science.4035344 pubmed: 4035344
Harel R, Futerman AH (1993) Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268:14476–14481
doi: 10.1016/S0021-9258(19)85263-8 pubmed: 8314804
Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565. https://doi.org/10.1038/nrm1423
doi: 10.1038/nrm1423 pubmed: 15232573
Grassmé H, Becker KA (2013) Sphingolipids in disease. Handb Exp Pharmacol 216:305–320. https://doi.org/10.1007/978-3-7091-1511-4_15
Futerman AH, Hardy J (2016) Perspective: finding common ground. Nature 537:S160–S161. https://doi.org/10.1038/537s160a
doi: 10.1038/537s160a pubmed: 27652785
Nalls MA, Duran R, Lopez G, Kurzawa-Akanbi M, McKeith IG, Chinnery PF, Morris CM, Theuns J, Crosiers D, Cras P, Engelborghs S, Deyn PPD, Broeckhoven CV, Mann DMA, Snowden J, Pickering-Brown S, Halliwell N, Davidson Y, Gibbons L, Harris J, Sheerin U-M, Bras J, Hardy J, Clark L, Marder K, Honig LS, Berg D, Maetzler W, Brockmann K, Gasser T, Novellino F, Quattrone A, Annesi G, Marco EVD, Rogaeva E, Masellis M, Black SE, Bilbao JM, Foroud T, Ghetti B, Nichols WC, Pankratz N, Halliday G, Lesage S, Klebe S, Durr A, Duyckaerts C, Brice A, Giasson BI, Trojanowski JQ, Hurtig HI, Tayebi N, Landazabal C, Knight MA, Keller M, Singleton AB, Wolfsberg TG, Sidransky E (2013) A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 70:727–735. https://doi.org/10.1001/jamaneurol.2013.1925
doi: 10.1001/jamaneurol.2013.1925 pubmed: 23588557
Gleiser M (2021) Science and awe. Ann N York Acad Sci 1501:78–80. https://doi.org/10.1111/nyas.14576
doi: 10.1111/nyas.14576
Paulson S, Gleiser M, Lombrozo T, Francis G (2020) The enigma of life: confronting marvels at the edges of science. Ann N York Acad Sci 1501:48–66. https://doi.org/10.1111/nyas.14409
doi: 10.1111/nyas.14409
Dingjan T, Futerman AH (2021) The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. BioEssays 43:e2100021. https://doi.org/10.1002/bies.202100021
doi: 10.1002/bies.202100021 pubmed: 33656770
Lone MA, Santos T, Alecu I, Silva LC, Hornemann T (2019) 1-Deoxysphingolipids. Biochimica Et Biophysica Acta Mol Cell Biology Lipids 1864:512–521. https://doi.org/10.1016/j.bbalip.2018.12.013
doi: 10.1016/j.bbalip.2018.12.013
Cloud P (1987) The anthropic cosmological principle. John D. Barrow. Frank J Tipler Q Rev Biol 62:63–64. https://doi.org/10.1086/415280
doi: 10.1086/415280
Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 1842:1993–2016. https://doi.org/10.1038/nrm.2017.138
doi: 10.1038/nrm.2017.138
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E, Levental I (2020) Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 16:644–652. https://doi.org/10.1038/s41589-020-0529-6
doi: 10.1038/s41589-020-0529-6 pubmed: 32367017 pmcid: 7246138
Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356. https://doi.org/10.1002/iub.319
doi: 10.1002/iub.319 pubmed: 20222015 pmcid: 2858252
Park J-W, Park W-J, Futerman AH (2013) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochimica Et Biophysica Acta Bba - Mol Cell Biology Lipids 1841:671–681. https://doi.org/10.1016/j.bbalip.2013.08.019
doi: 10.1016/j.bbalip.2013.08.019
Silva LC, David OB, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH, Prieto M, Futerman AH (2012) Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 53:430–436. https://doi.org/10.1194/jlr.m022715
doi: 10.1194/jlr.m022715 pubmed: 22231783 pmcid: 3276466
Biran A, Dingjan T, Futerman AH (2024) How has the evolution of our understanding of the compartmentalization of sphingolipid biosynthesis over the past 30 years altered our view of the evolution of the pathway? Curr Top Membr. https://doi.org/10.1016/bs.ctm.2024.06.001
doi: 10.1016/bs.ctm.2024.06.001 pubmed: 39078394
Biran A, Santos TCB, Dingjan T, Futerman AH (2024) The sphinx and the egg: evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids 1869:159462. https://doi.org/10.1016/j.bbalip.2024.159462
doi: 10.1016/j.bbalip.2024.159462
Santos TCB, Futerman AH (2023) The fats of the matter: lipids in prebiotic chemistry and in origin of life studies. Prog Lipid Res 92:101253. https://doi.org/10.1016/j.plipres.2023.101253
doi: 10.1016/j.plipres.2023.101253 pubmed: 37659458
Zelnik ID, Mestre B, Weinstein JJ, Dingjan T, Izrailov S, Ben-Dor S, Fleishman SJ, Futerman AH (2023) Computational design and molecular dynamics simulations suggest the mode of substrate binding in ceramide synthases. Nat Commun 14:2330. https://doi.org/10.1038/s41467-023-38047-x
doi: 10.1038/s41467-023-38047-x pubmed: 37087500 pmcid: 10122649
Dingjan T, Futerman AH (2024) Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum. Front Cell Dev Biol 12:1457209. https://doi.org/10.3389/fcell.2024.1457209
doi: 10.3389/fcell.2024.1457209 pubmed: 39170919 pmcid: 11335536

Auteurs

Anthony H Futerman (AH)

Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel. tony.futerman@weizmann.ac.il.

Classifications MeSH