Quantitation of mitral regurgitation using positron emission tomography.

Cardiac PET Cardiovascular MRI Cardiovascular diseases Mitral regurgitation Quantitation

Journal

EJNMMI research
ISSN: 2191-219X
Titre abrégé: EJNMMI Res
Pays: Germany
ID NLM: 101560946

Informations de publication

Date de publication:
18 Sep 2024
Historique:
received: 14 06 2024
accepted: 09 09 2024
medline: 19 9 2024
pubmed: 19 9 2024
entrez: 18 9 2024
Statut: epublish

Résumé

Cardiac positron emission tomography (PET) offers non-invasive assessment of perfusion and left ventricular (LV) function from a single dynamic scan. However, no prior assessment of mitral regurgitation severity by PET has been presented. Application of indicator dilution techniques and gated image analyses to PET data enables calculation of forward stroke volume and total LV stroke volume. We aimed to evaluate a combination of these methods for measurement of regurgitant volume (RegVol) and fraction (RegF) using dynamic Twenty-one patients with severe primary mitral valve regurgitation underwent same-day dynamic PET examinations ( LV regurgitation severity quantified using cardiac PET correlated with CMR and showed high accuracy for discriminating patients from healthy volunteers.

Sections du résumé

BACKGROUND BACKGROUND
Cardiac positron emission tomography (PET) offers non-invasive assessment of perfusion and left ventricular (LV) function from a single dynamic scan. However, no prior assessment of mitral regurgitation severity by PET has been presented. Application of indicator dilution techniques and gated image analyses to PET data enables calculation of forward stroke volume and total LV stroke volume. We aimed to evaluate a combination of these methods for measurement of regurgitant volume (RegVol) and fraction (RegF) using dynamic
RESULTS RESULTS
Twenty-one patients with severe primary mitral valve regurgitation underwent same-day dynamic PET examinations (
CONCLUSIONS CONCLUSIONS
LV regurgitation severity quantified using cardiac PET correlated with CMR and showed high accuracy for discriminating patients from healthy volunteers.

Identifiants

pubmed: 39294533
doi: 10.1186/s13550-024-01150-1
pii: 10.1186/s13550-024-01150-1
doi:

Types de publication

Journal Article

Langues

eng

Pagination

85

Informations de copyright

© 2024. The Author(s).

Références

Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.
doi: 10.1016/S0140-6736(06)69208-8 pubmed: 16980116
Andell P, Li X, Martinsson A, Andersson C, Stagmo M, Zoller B, et al. Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study. Heart. 2017;103(21):1696–703.
doi: 10.1136/heartjnl-2016-310894 pubmed: 28432156
Dziadzko V, Clavel MA, Dziadzko M, Medina-Inojosa JR, Michelena H, Maalouf J, et al. Outcome and undertreatment of mitral regurgitation: a community cohort study. Lancet. 2018;391(10124):960–9.
doi: 10.1016/S0140-6736(18)30473-2 pubmed: 29536860 pmcid: 5907494
Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, et al. 2020 ACC/AHA Guideline for the management of patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice guidelines. Circulation. 2021;143(5):e72–227.
pubmed: 33332150
Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632.
doi: 10.1093/eurheartj/ehab395 pubmed: 34453165
Myerson SG, d’Arcy J, Christiansen JP, Dobson LE, Mohiaddin R, Francis JM, et al. Determination of clinical outcome in Mitral Regurgitation with Cardiovascular magnetic resonance quantification. Circulation. 2016;133(23):2287–96.
doi: 10.1161/CIRCULATIONAHA.115.017888 pubmed: 27189033
Ajmone Marsan N, Delgado V, Shah DJ, Pellikka P, Bax JJ, Treibel T, et al. Valvular heart disease: shifting the focus to the myocardium. Eur Heart J. 2023;44(1):28–40.
doi: 10.1093/eurheartj/ehac504 pubmed: 36167923
Fragasso G, Sanvito F, Monaca G, Ardizzone V, De Bonis M, Pappalardo F, et al. Myocardial fibrosis in asymptomatic patients undergoing surgery for mitral and aortic valve regurgitation. J Cardiovasc Med (Hagerstown). 2022;23(8):505–12.
doi: 10.2459/JCM.0000000000001347 pubmed: 35904996
Ahmed MI, Andrikopoulou E, Zheng J, Ulasova E, Pat B, Kelley EE, et al. Interstitial Collagen Loss, myocardial remodeling, and function in primary mitral regurgitation. JACC Basic Transl Sci. 2022;7(10):973–81.
doi: 10.1016/j.jacbts.2022.04.014 pubmed: 36337921 pmcid: 9626893
Miller MA, Adams DH, Pandis D, Robson PM, Pawale A, Pyzik R, et al. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging in arrhythmic mitral valve prolapse. JAMA Cardiol. 2020;5(9):1000–5.
doi: 10.1001/jamacardio.2020.1555 pubmed: 32936270
Sorensen J, Bergsten J, Baron T, Orndahl LH, Kero T, Bjerner T, et al. Myocardial external efficiency in asymptomatic severe primary mitral regurgitation using (11)C-Acetate PET. J Nucl Med. 2023;64(4):645–51.
doi: 10.2967/jnumed.122.264945 pubmed: 36604185
Sorensen J, Stahle E, Langstrom B, Frostfeldt G, Wikstrom G, Hedenstierna G. Simple and accurate assessment of forward cardiac output by use of 1-(11)C-acetate PET verified in a pig model. J Nucl Med. 2003;44(7):1176–83.
pubmed: 12843234
Harms HJ, Tolbod LP, Hansson NH, Kero T, Orndahl LH, Kim WY, et al. Automatic extraction of forward stroke volume using dynamic PET/CT: a dual-tracer and dual-scanner validation in patients with heart valve disease. EJNMMI Phys. 2015;2(1):25.
doi: 10.1186/s40658-015-0133-0 pubmed: 26501826 pmcid: 4883637
Hansson NH, Tolbod L, Harms HJ, Wiggers H, Kim WY, Hansen E, et al. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency. J Nucl Cardiol. 2016;23(4):670–9.
doi: 10.1007/s12350-015-0331-0 pubmed: 27094041
Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64(14):1464–75.
doi: 10.1016/j.jacc.2014.05.069 pubmed: 25277618
Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and Hybrid Imaging for diagnosis of ischemic heart Disease determined by fractional Flow Reserve. JAMA Cardiol. 2017;2(10):1100–7.
doi: 10.1001/jamacardio.2017.2471 pubmed: 28813561 pmcid: 5710451
Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13.
doi: 10.1161/CIRCULATIONAHA.109.915009 pubmed: 20660808
Nordstrom J, Kero T, Harms HJ, Widstrom C, Flachskampf FA, Sorensen J, et al. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated (15)O-water PET/CT: 5D-PET. EJNMMI Phys. 2017;4(1):26.
doi: 10.1186/s40658-017-0195-2 pubmed: 29138942 pmcid: 5686036
Driessen RS, van Timmeren JE, Stuijfzand WJ, Rijnierse MT, Danad I, Raijmakers PG, et al. Measurement of LV volumes and function using Oxygen-15 water-gated PET and comparison with CMR Imaging. JACC Cardiovasc Imaging. 2016;9(12):1472–4.
doi: 10.1016/j.jcmg.2016.01.014 pubmed: 27085444
Vanhove C, Franken PR, Defrise M, Momen A, Everaert H, Bossuyt A. Automatic determination of left ventricular ejection fraction from gated blood-pool tomography. J Nucl Med. 2001;42(3):401–7.
pubmed: 11337514
Nordstrom J, Kvernby S, Kero T, Sorensen J, Harms HJ, Lubberink M. Left-ventricular volumes and ejection fraction from cardiac ECG-gated (15)O-water positron emission tomography compared to cardiac magnetic resonance imaging using simultaneous hybrid PET/MR. J Nucl Cardiol. 2023;30(4):1352–62.
doi: 10.1007/s12350-022-03154-7 pubmed: 36482239
Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging. 2011;38(5):930–9.
doi: 10.1007/s00259-011-1730-3 pubmed: 21271246 pmcid: 3070081

Auteurs

Jonathan Sigfridsson (J)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. Jonathan.sigfridsson@uu.se.

Tomasz Baron (T)

Cardiology and Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden.

Johannes Bergsten (J)

Cardiology and Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.

Hendrik J Harms (HJ)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
MedTrace Pharma A/S, Horsholm, Denmark.

Jonny Nordström (J)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
Centre for Research and Development, Uppsala/Gävleborg County, Gävle, Sweden.

Tanja Kero (T)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Patrik Svanström (P)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Elin Lindström (E)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Lieuwe Appel (L)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

My Jonasson (M)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Mark Lubberink (M)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Frank A Flachskampf (FA)

Cardiology and Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.

Jens Sörensen (J)

Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

Classifications MeSH