Longitudinal associations between depressive symptoms and cell deformability: do glucocorticoids play a role?

Cell deformability Depressive symptoms Hair cortisol Hair cortisone Real-time deformability cytometry

Journal

European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030

Informations de publication

Date de publication:
16 Sep 2024
Historique:
received: 13 05 2024
accepted: 07 09 2024
medline: 20 9 2024
pubmed: 20 9 2024
entrez: 19 9 2024
Statut: aheadofprint

Résumé

Cell deformability of all major blood cell types is increased in depressive disorders (DD). Furthermore, impaired glucocorticoid secretion is associated with DD, as well as depressive symptoms in general and known to alter cell mechanical properties. Nevertheless, there are no longitudinal studies examining accumulated glucocorticoid output and depressive symptoms regarding cell deformability. The aim of the present study was to investigate, whether depressive symptoms predict cell deformability one year later and whether accumulated hair glucocorticoids mediate this relationship. In 136 individuals (n

Identifiants

pubmed: 39297974
doi: 10.1007/s00406-024-01902-z
pii: 10.1007/s00406-024-01902-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

World Health Organization (2017) Depression and other common mental disorders: global health estimates. World Health Organization
Vos T, Lim SS, Abbafati C et al (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9
doi: 10.1016/S0140-6736(20)30925-9
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5
doi: 10.1176/appi.books.9780890425596
Hasin DS, Sarvet AL, Meyers JL et al (2018) Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry 75:336. https://doi.org/10.1001/jamapsychiatry.2017.4602
doi: 10.1001/jamapsychiatry.2017.4602 pubmed: 29450462 pmcid: 5875313
Vos T, Abajobir AA, Abate KH et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet 390:1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2
doi: 10.1016/S0140-6736(17)32154-2
Munder T, Flückiger C, Leichsenring F et al (2018) Is psychotherapy effective? A re-analysis of treatments for depression. Epidemiol Psychiatr Sci 28:268–274. https://doi.org/10.1017/S2045796018000355
doi: 10.1017/S2045796018000355 pubmed: 30058524 pmcid: 6998909
Munkholm K, Paludan-Müller AS, Boesen K (2019) Considering the methodological limitations in the evidence base of antidepressants for depression: a reanalysis of a network meta-analysis. BMJ Open 9:e024886. https://doi.org/10.1136/bmjopen-2018-024886
doi: 10.1136/bmjopen-2018-024886 pubmed: 31248914 pmcid: 6597641
Guidi J, Fava GA, Fava M, Papakostas GI (2011) Efficacy of the sequential integration of psychotherapy and pharmacotherapy in major depressive disorder: a preliminary meta-analysis. Psychol Med 41:321–331. https://doi.org/10.1017/S0033291710000826
doi: 10.1017/S0033291710000826 pubmed: 20444307
McLachlan G (2018) Treatment resistant depression: what are the options? https://doi.org/10.1136/bmj.k5354 . BMJ k5354
Rush AJ, Trivedi MH, Wisniewski SR et al (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163:1905–1917. https://doi.org/10.1176/ajp.2006.163.11.1905
doi: 10.1176/ajp.2006.163.11.1905 pubmed: 17074942
Biselli T, Lange SS, Sablottny L et al (2021) Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: a systematic review. Eur J Neurosci 53:9–38. https://doi.org/10.1111/ejn.14603
doi: 10.1111/ejn.14603 pubmed: 31633833
Fiacco S, Walther A, Ehlert U (2019) Steroid secretion in healthy aging. Psychoneuroendocrinology 105:64–78. https://doi.org/10.1016/j.psyneuen.2018.09.035
doi: 10.1016/j.psyneuen.2018.09.035 pubmed: 30314729
Otte C, Gold SM, Penninx BW et al (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065. https://doi.org/10.1038/nrdp.2016.65
doi: 10.1038/nrdp.2016.65 pubmed: 27629598
Rothe N, Steffen J, Penz M et al (2020) Examination of peripheral basal and reactive cortisol levels in major depressive disorder and the burnout syndrome: a systematic review. Neurosci Biobehavioral Reviews 114:232–270. https://doi.org/10.1016/j.neubiorev.2020.02.024
doi: 10.1016/j.neubiorev.2020.02.024
Iob E, Kirschbaum C, Steptoe A (2020) Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: the role of cognitive-affective and somatic symptoms. Mol Psychiatry 25:1130–1140. https://doi.org/10.1038/s41380-019-0501-6
doi: 10.1038/s41380-019-0501-6 pubmed: 31435001
Lopez-Vilchez I, Diaz-Ricart M, Navarro V et al (2016) Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model. Transl Psychiatry 6:e886. https://doi.org/10.1038/tp.2016.156
doi: 10.1038/tp.2016.156 pubmed: 27598970 pmcid: 5048198
Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. https://doi.org/10.1038/mp.2012.33
doi: 10.1038/mp.2012.33 pubmed: 22525486
Pariante CM (2017) Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol 27:554–559. https://doi.org/10.1016/j.euroneuro.2017.04.001
doi: 10.1016/j.euroneuro.2017.04.001 pubmed: 28479211
Rodrigues R, Petersen RB, Perry G (2014) Parallels between major depressive disorder and Alzheimer’s disease: role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol 34:925–949. https://doi.org/10.1007/s10571-014-0074-5
doi: 10.1007/s10571-014-0074-5 pubmed: 24927694 pmcid: 4163504
Walther A, Cannistraci CV, Simons K et al (2018) Lipidomics in major depressive disorder. Front Psychiatry 9:459. https://doi.org/10.3389/fpsyt.2018.00459
doi: 10.3389/fpsyt.2018.00459 pubmed: 30374314 pmcid: 6196281
Wolkowitz OM, Epel ES, Reus VI, Mellon SH (2010) Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 27:327–338. https://doi.org/10.1002/da.20686
doi: 10.1002/da.20686 pubmed: 20376837
Otto O, Rosendahl P, Mietke A et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199–202. https://doi.org/10.1038/nmeth.3281
doi: 10.1038/nmeth.3281 pubmed: 25643151
Rosenbluth MJ, Lam WA, Fletcher DA (2008) Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070. https://doi.org/10.1039/b802931h
doi: 10.1039/b802931h pubmed: 18584080 pmcid: 7931849
Kubánková M, Hohberger B, Hoffmanns J et al (2021) Physical phenotype of blood cells is altered in COVID-19. Biophys J 120:2838–2847. https://doi.org/10.1016/j.bpj.2021.05.025
doi: 10.1016/j.bpj.2021.05.025 pubmed: 34087216 pmcid: 8169220
Toepfner N, Herold C, Otto O et al (2018) Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. eLife 7:e29213. https://doi.org/10.7554/eLife.29213
doi: 10.7554/eLife.29213 pubmed: 29331015 pmcid: 5790376
Bashant KR, Vassallo A, Herold C et al (2019) Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 105:1143–1153. https://doi.org/10.1002/JLB.MA0718-295RR
doi: 10.1002/JLB.MA0718-295RR pubmed: 30835869
Bashant KR, Toepfner N, Day CJ et al (2020) The mechanics of myeloid cells. Biol Cell 112:103–112. https://doi.org/10.1111/boc.201900084
doi: 10.1111/boc.201900084 pubmed: 31916263
Walther A, Mackens-Kiani A, Eder J et al (2022) Depressive disorders are associated with increased peripheral blood cell deformability: a cross-sectional case-control study (Mood-Morph). Transl Psychiatry 12:1–12. https://doi.org/10.1038/s41398-022-01911-3
doi: 10.1038/s41398-022-01911-3
Fay ME, Myers DR, Kumar A et al (2016) Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proc Natl Acad Sci USA 113:1987–1992. https://doi.org/10.1073/pnas.1508920113
doi: 10.1073/pnas.1508920113 pubmed: 26858400 pmcid: 4776450
Moylan S, Berk M, Dean OM et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. https://doi.org/10.1016/j.neubiorev.2014.05.007
doi: 10.1016/j.neubiorev.2014.05.007 pubmed: 24858007
Ekpenyong AE, Whyte G, Chalut K et al (2012) Viscoelastic properties of differentiating blood cells are fate- and function-dependent. PLoS ONE 7:e45237. https://doi.org/10.1371/journal.pone.0045237
doi: 10.1371/journal.pone.0045237 pubmed: 23028868 pmcid: 3459925
Lam WA, Rosenbluth MJ, Fletcher DA (2008) Increased leukaemia cell stiffness is associated with symptoms of leucostasis in paediatric acute lymphoblastic leukaemia. Br J Haematol 142:497–501. https://doi.org/10.1111/j.1365-2141.2008.07219.x
doi: 10.1111/j.1365-2141.2008.07219.x pubmed: 18544083 pmcid: 7899135
Ravetto A, Wyss HM, Anderson PD et al (2014) Monocytic cells become less compressible but more deformable upon activation. PLoS ONE 9:e92814. https://doi.org/10.1371/journal.pone.0092814
doi: 10.1371/journal.pone.0092814 pubmed: 24676335 pmcid: 3968036
Jasenovec T, Radosinska D, Celusakova H et al (2019) Erythrocyte deformability in children with autism spectrum disorder: correlation with clinical features. Physiol Res 68:S307–S313. https://doi.org/10.33549/physiolres.934349
doi: 10.33549/physiolres.934349 pubmed: 31928048
Saha AK, Schmidt BR, Wilhelmy J et al (2019) Red blood cell deformability is diminished in patients with chronic fatigue syndrome. Clin Hemorheol Microcirc 71:113–116. https://doi.org/10.3233/CH-180469
doi: 10.3233/CH-180469 pubmed: 30594919 pmcid: 6398549
Kräter M, Abuhattum S, Soteriou D et al (2021) AIDeveloper: deep learning image classification in life science and beyond. Adv Sci 8:2003743. https://doi.org/10.1002/advs.202003743
doi: 10.1002/advs.202003743
Nawaz AA, Urbanska M, Herbig M et al (2020) Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat Methods 17:595–599. https://doi.org/10.1038/s41592-020-0831-y
doi: 10.1038/s41592-020-0831-y pubmed: 32451476
Urbanska M, Muñoz HE, Shaw Bagnall J et al (2020) A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 17:587–593. https://doi.org/10.1038/s41592-020-0818-8
doi: 10.1038/s41592-020-0818-8 pubmed: 32341544 pmcid: 7275893
Wu P-H, Aroush DR-B, Asnacios A et al (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15:491–498. https://doi.org/10.1038/s41592-018-0015-1
doi: 10.1038/s41592-018-0015-1 pubmed: 29915189 pmcid: 6582221
Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126. https://doi.org/10.1097/PSY.0b013e31820ad12b
doi: 10.1097/PSY.0b013e31820ad12b pubmed: 21257974
Miller R, Kirschbaum C (2019) Cultures under stress: a cross-national meta-analysis of cortisol responses to the Trier Social Stress Test and their association with anxiety-related value orientations and internalizing mental disorders. Psychoneuroendocrinology 105:147–154. https://doi.org/10.1016/j.psyneuen.2018.12.236
doi: 10.1016/j.psyneuen.2018.12.236 pubmed: 30611610
Zorn JV, Schür RR, Boks MP et al (2017) Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77:25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036
doi: 10.1016/j.psyneuen.2016.11.036 pubmed: 28012291
Gerritsen L, Staufenbiel SM, Penninx BWJH et al (2019) Long-term glucocorticoid levels measured in hair in patients with depressive and anxiety disorders. Psychoneuroendocrinology 101:246–252. https://doi.org/10.1016/j.psyneuen.2018.11.019
doi: 10.1016/j.psyneuen.2018.11.019 pubmed: 30472466
Rothe N, Vogel S, Schmelzer K et al (2021) The moderating effect of cortisol and dehydroepiandrosterone on the relation between sleep and depression or burnout. Compr Psychoneuroendocrinology 7:100051. https://doi.org/10.1016/j.cpnec.2021.100051
doi: 10.1016/j.cpnec.2021.100051
Stalder T, Steudte-Schmiedgen S, Alexander N et al (2017) Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology 77:261–274. https://doi.org/10.1016/j.psyneuen.2016.12.017
doi: 10.1016/j.psyneuen.2016.12.017 pubmed: 28135674
Steudte-Schmiedgen S, Wichmann S, Stalder T et al (2017) Hair cortisol concentrations and cortisol stress reactivity in generalized anxiety disorder, major depression and their comorbidity. J Psychiatr Res 84:184–190. https://doi.org/10.1016/j.jpsychires.2016.09.024
doi: 10.1016/j.jpsychires.2016.09.024 pubmed: 27744230
Walther A, Kirschbaum C, Wehrli S et al (2023) Depressive symptoms are negatively associated with hair N-arachidonoylethanolamine (anandamide) levels: a cross-lagged panel analysis of four annual assessment waves examining hair endocannabinoids and cortisol. Prog Neuropsychopharmacol Biol Psychiatry 121:110658. https://doi.org/10.1016/j.pnpbp.2022.110658
doi: 10.1016/j.pnpbp.2022.110658 pubmed: 36252885
Kim J-K, Shin YJ, Ha LJ et al (2019) Unraveling the mechanobiology of immune system. Adv Healthc Mater 8:e1801332. https://doi.org/10.1002/adhm.201801332
doi: 10.1002/adhm.201801332 pubmed: 30614636 pmcid: 7700013
Lynall M-E, Turner L, Bhatti J et al (2020) Peripheral blood cell-stratified subgroups of inflamed depression. Biol Psychiatry 88:185–196. https://doi.org/10.1016/j.biopsych.2019.11.017
doi: 10.1016/j.biopsych.2019.11.017 pubmed: 32000983
Demirkan A, Isaacs A, Ugocsai P et al (2013) Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res 47:357–362. https://doi.org/10.1016/j.jpsychires.2012.11.001
doi: 10.1016/j.jpsychires.2012.11.001 pubmed: 23207112
Knowles EEM, Huynh K, Meikle PJ et al (2017) The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk. Eur Psychiatry 43:44–50. https://doi.org/10.1016/j.eurpsy.2017.02.479
doi: 10.1016/j.eurpsy.2017.02.479 pubmed: 28365467
Liu X, Li J, Zheng P et al (2016) Plasma lipidomics reveals potential lipid markers of major depressive disorder. Anal Bioanal Chem 408:6497–6507. https://doi.org/10.1007/s00216-016-9768-5
doi: 10.1007/s00216-016-9768-5 pubmed: 27457104
Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am 29:247–264. https://doi.org/10.1016/j.iac.2009.02.002
doi: 10.1016/j.iac.2009.02.002 pubmed: 19389580 pmcid: 2740752
Penz M, Wekenborg MK, Pieper L et al (2018) The Dresden Burnout Study: protocol of a prospective cohort study for the bio-psychological investigation of burnout. Int J Methods Psychiatr Res 27:e1613. https://doi.org/10.1002/mpr.1613
doi: 10.1002/mpr.1613 pubmed: 29611872 pmcid: 6877172
Kroenke K, Spitzer RL, Williams JBW (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16:606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
doi: 10.1046/j.1525-1497.2001.016009606.x pubmed: 11556941 pmcid: 1495268
Ware J, Kosinski M, Keller SD (1996) A 12-Item short-form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 34:220–233. https://doi.org/10.1097/00005650-199603000-00003
doi: 10.1097/00005650-199603000-00003 pubmed: 8628042
He C, Levis B, Riehm KE et al (2020) The accuracy of the Patient Health Questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis. Psychother Psychosom 89:25–37. https://doi.org/10.1159/000502294
doi: 10.1159/000502294 pubmed: 31593971
Levis B, Sun Y, He C et al (2020) Accuracy of the PHQ-2 alone and in combination with the PHQ-9 for screening to detect major depression: systematic review and meta-analysis. JAMA 323:2290. https://doi.org/10.1001/jama.2020.6504
doi: 10.1001/jama.2020.6504 pubmed: 32515813 pmcid: 7284301
Hoyer J, Voss C, Strehle J et al (2020) Test-retest reliability of the computer-assisted DIA-X-5 interview for mental disorders. BMC Psychiatry 20:280. https://doi.org/10.1186/s12888-020-02653-6
doi: 10.1186/s12888-020-02653-6 pubmed: 32503463 pmcid: 7275419
Gao W, Stalder T, Foley P et al (2013) Quantitative analysis of steroid hormones in human hair using a column-switching LC-APCI-MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 928:1–8. https://doi.org/10.1016/j.jchromb.2013.03.008
doi: 10.1016/j.jchromb.2013.03.008 pubmed: 23584040
Gao W, Kirschbaum C, Grass J, Stalder T (2016) LC-MS based analysis of endogenous steroid hormones in human hair. J Steroid Biochem Mol Biol 162:92–99. https://doi.org/10.1016/j.jsbmb.2015.12.022
doi: 10.1016/j.jsbmb.2015.12.022 pubmed: 26718873
Wennig R (2000) Potential problems with the interpretation of hair analysis results. Forensic Sci Int 107:5–12. https://doi.org/10.1016/s0379-0738(99)00146-2
doi: 10.1016/s0379-0738(99)00146-2 pubmed: 10689559
R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing
Hayes AF (2022) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach, Third edition. The Guilford Press, New York London
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Croux C, Dehon C (2010) Influence functions of the Spearman and Kendall correlation measures. Stat Methods Appl 19:497–515. https://doi.org/10.1007/s10260-010-0142-z
doi: 10.1007/s10260-010-0142-z
Müller CP, Reichel M, Mühle C et al (2015) Brain membrane lipids in major depression and anxiety disorders. Biochimica et Biophysica Acta (BBA) - molecular and cell. Biology Lipids 1851:1052–1065. https://doi.org/10.1016/j.bbalip.2014.12.014
doi: 10.1016/j.bbalip.2014.12.014
Goecke IA, Alvarez C, Henríquez J et al (2007) Methotrexate regulates the expression of glucocorticoid receptor alpha and beta isoforms in normal human peripheral mononuclear cells and human lymphocyte cell lines in vitro. Mol Immunol 44:2115–2123. https://doi.org/10.1016/j.molimm.2006.07.303
doi: 10.1016/j.molimm.2006.07.303 pubmed: 17118450
Heiske A, Jesberg J, Krieg J-C, Vedder H (2003) Differential effects of antidepressants on glucocorticoid receptors in human primary blood cells and human monocytic U-937 cells. Neuropsychopharmacology 28:807–817. https://doi.org/10.1038/sj.npp.1300056
doi: 10.1038/sj.npp.1300056 pubmed: 12655328
Li L-B, Leung DYM, Hall CF, Goleva E (2006) Divergent expression and function of glucocorticoid receptor β in human monocytes and T cells. J Leukoc Biol 79:818–827. https://doi.org/10.1189/jlb.0805466
doi: 10.1189/jlb.0805466 pubmed: 29350843
Lu KD, Radom-Aizik S, Haddad F et al (2017) Glucocorticoid receptor expression on circulating leukocytes differs between healthy male and female adults. J Clin Transl Sci 1:108–114. https://doi.org/10.1017/cts.2016.20
doi: 10.1017/cts.2016.20 pubmed: 28649452 pmcid: 5471823
Ronchetti S, Ricci E, Migliorati G et al (2018) How glucocorticoids affect the neutrophil life. Int J Mol Sci 19:4090. https://doi.org/10.3390/ijms19124090
doi: 10.3390/ijms19124090 pubmed: 30563002 pmcid: 6321245
Steudte-Schmiedgen S, Kirschbaum C, Alexander N, Stalder T (2016) An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: insight from recent hair cortisol findings. Neurosci Biobehav Rev 69:124–135. https://doi.org/10.1016/j.neubiorev.2016.07.015
doi: 10.1016/j.neubiorev.2016.07.015 pubmed: 27443960
Cantave CY, Ouellet-Morin I, Giguère C-É et al (2022) The association of childhood maltreatment, sex, and hair cortisol concentrations with trajectories of depressive and anxious symptoms among adult psychiatric inpatients. Psychosom Med 84:20–28. https://doi.org/10.1097/PSY.0000000000001016
doi: 10.1097/PSY.0000000000001016 pubmed: 34596058
Hinkelmann K, Muhtz C, Dettenborn L et al (2013) Association between childhood trauma and low hair cortisol in depressed patients and healthy control subjects. Biol Psychiatry 74:e15–17. https://doi.org/10.1016/j.biopsych.2013.04.021
doi: 10.1016/j.biopsych.2013.04.021 pubmed: 23726317
Psarraki EE, Kokka I, Bacopoulou F et al (2021) Is there a relation between major depression and hair cortisol? A systematic review and meta-analysis. Psychoneuroendocrinology 124:105098. https://doi.org/10.1016/j.psyneuen.2020.105098
doi: 10.1016/j.psyneuen.2020.105098 pubmed: 33310696
Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709. https://doi.org/10.1038/mp.2016.3
doi: 10.1038/mp.2016.3 pubmed: 26903267 pmcid: 6056174
Wilson C, González-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 9:381. https://doi.org/10.3389/fncel.2015.00381
doi: 10.3389/fncel.2015.00381 pubmed: 26483635 pmcid: 4588006
Wong GT-H, Chang RC-C, Law AC-K (2013) A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Ageing Res Rev 12:67–75. https://doi.org/10.1016/j.arr.2012.08.004
doi: 10.1016/j.arr.2012.08.004 pubmed: 22995339

Auteurs

Julian Eder (J)

Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany.

Martin Kräter (M)

Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany.
Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.

Clemens Kirschbaum (C)

Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany.

Wei Gao (W)

Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany.
School of Psychology, Nanjing Normal University, Nanjing, China.

Magdalena Wekenborg (M)

Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany.
Else Kröner Fresenius Center of Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.

Marlene Penz (M)

Institute of Psychology, Johannes Kepler Universität Linz, Linz, Austria.

Nicole Rothe (N)

Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany.

Jochen Guck (J)

Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany.
Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.

Lucas Daniel Wittwer (LD)

Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
Institut für Numerische Mathematik und Optimierung, Technische Universität Freiberg, 09599, Freiberg, Germany.

Andreas Walther (A)

Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, Zurich, 8050, Switzerland. a.walther@psychologie.uzh.ch.

Classifications MeSH