Systematic analysis of SARS-CoV-2 Omicron subvariants' impact on B and T cell epitopes.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2024
2024
Historique:
received:
22
03
2024
accepted:
14
07
2024
medline:
20
9
2024
pubmed:
20
9
2024
entrez:
19
9
2024
Statut:
epublish
Résumé
Epitopes are specific structures in antigens that are recognized by the immune system. They are widely used in the context of immunology-related applications, such as vaccine development, drug design, and diagnosis / treatment / prevention of disease. The SARS-CoV-2 virus has represented the main point of interest within the viral and genomic surveillance community in the last four years. Its ability to mutate and acquire new characteristics while it reorganizes into new variants has been analyzed from many perspectives. Understanding how epitopes are impacted by mutations that accumulate on the protein level cannot be underrated. With a focus on Omicron-named SARS-CoV-2 lineages, including the last WHO-designated Variants of Interest, we propose a workflow for data retrieval, integration, and analysis pipeline for conducting a database-wide study on the impact of lineages' characterizing mutations on all T cell and B cell linear epitopes collected in the Immune Epitope Database (IEDB) for SARS-CoV-2. Our workflow allows us to showcase novel qualitative and quantitative results on 1) coverage of viral proteins by deposited epitopes; 2) distribution of epitopes that are mutated across Omicron variants; 3) distribution of Omicron characterizing mutations across epitopes. Results are discussed based on the type of epitope, the response frequency of the assays, and the sample size. Our proposed workflow can be reproduced at any point in time, given updated variant characterizations and epitopes from IEDB, thereby guaranteeing to observe a quantitative landscape of mutations' impact on demand. A big data-driven analysis such as the one provided here can inform the next genomic surveillance policies in combatting SARS-CoV-2 and future epidemic viruses.
Identifiants
pubmed: 39298436
doi: 10.1371/journal.pone.0307873
pii: PONE-D-24-11657
doi:
Substances chimiques
Epitopes, T-Lymphocyte
0
Epitopes, B-Lymphocyte
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0307873Informations de copyright
Copyright: © 2024 Al Khalaf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.