The gut microbiota and its metabolite butyrate shape metabolism and antiviral immunity along the gut-lung axis in the chicken.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 Sep 2024
20 Sep 2024
Historique:
received:
30
11
2023
accepted:
30
08
2024
medline:
20
9
2024
pubmed:
20
9
2024
entrez:
19
9
2024
Statut:
epublish
Résumé
The gut microbiota exerts profound influence on poultry immunity and metabolism through mechanisms that yet need to be elucidated. Here we used conventional and germ-free chickens to explore the influence of the gut microbiota on transcriptomic and metabolic signatures along the gut-lung axis in poultry. Our results demonstrated a differential regulation of certain metabolites and genes associated with innate immunity and metabolism in peripheral tissues of germ-free birds. Furthermore, we evidenced the gut microbiota's capacity to regulate mucosal immunity in the chicken lung during avian influenza virus infection. Finally, by fine-analysing the antiviral pathways triggered by the short-chain fatty acid (SCFA) butyrate in chicken respiratory epithelial cells, we found that it regulates interferon-stimulated genes (ISGs), notably OASL, via the transcription factor Sp1. These findings emphasize the pivotal role of the gut microbiota and its metabolites in shaping homeostasis and immunity in poultry, offering crucial insights into the mechanisms governing the communication between the gut and lungs in birds.
Identifiants
pubmed: 39300162
doi: 10.1038/s42003-024-06815-0
pii: 10.1038/s42003-024-06815-0
doi:
Substances chimiques
Butyrates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1185Informations de copyright
© 2024. The Author(s).
Références
Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).
pubmed: 27383981
doi: 10.1038/nature18847
Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).
pubmed: 28393285
doi: 10.1007/s00394-017-1445-8
Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).
pubmed: 21358670
doi: 10.1038/nrmicro2536
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
pubmed: 27259147
doi: 10.1016/j.cell.2016.05.041
Fachi, J. L. et al. Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep. 27, 750–761.e7 (2019).
pubmed: 30995474
doi: 10.1016/j.celrep.2019.03.054
van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).
pubmed: 33674141
doi: 10.1016/j.tim.2021.02.001
Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 12, 843–850 (2019).
pubmed: 30976087
doi: 10.1038/s41385-019-0160-6
Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314 (2009).
pubmed: 19404271
doi: 10.1038/nrgastro.2009.35
Bindari, Y. R. & Gerber, P. F. Centennial review: factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 101, 101612 (2022).
pubmed: 34872745
doi: 10.1016/j.psj.2021.101612
Oviedo-Rondón, E. O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 250, 1–8 (2019).
doi: 10.1016/j.anifeedsci.2019.01.009
Varmuzova, K. et al. Composition of gut microbiota influences resistance of newly hatched chickens to salmonella enteritidis infection. Front. Microbiol. 7, 957 (2016).
Diaz Carrasco, J. M., Casanova, N. A. & Fernández Miyakawa, M. E. Microbiota, gut health and chicken productivity: what is the connection? Microorganisms 7, 374 (2019).
pubmed: 31547108
pmcid: 6843312
doi: 10.3390/microorganisms7100374
Rubio, L. A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci. 98, 695–706 (2019).
pubmed: 30247675
doi: 10.3382/ps/pey416
Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLOS One 9, e91941 (2014).
pubmed: 24657972
pmcid: 3962364
doi: 10.1371/journal.pone.0091941
Broom, L. J. & Kogut, M. H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 204, 44–51 (2018).
pubmed: 30596380
doi: 10.1016/j.vetimm.2018.10.002
Saint-Martin, V., Quere, P., Trapp, S. & Guabiraba, R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front. Immunol. 13, 956670 (2022).
pubmed: 36268022
pmcid: 9577073
doi: 10.3389/fimmu.2022.956670
Verhagen, J. H., Fouchier, R. A. M. & Lewis, N. Highly pathogenic avian influenza viruses at the wild–domestic bird interface in europe: future directions for research and surveillance. Viruses 13, 212 (2021).
pubmed: 33573231
pmcid: 7912471
doi: 10.3390/v13020212
Guitton, E. et al. Production of germ-free fast-growing broilers from a commercial line for microbiota studies. J. Vis. Exp. e61148 https://doi.org/10.3791/61148 (2020)
Rampini, S. K. et al. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin. Infect. Dis. 53, 1245–1251 (2011).
pubmed: 21976460
doi: 10.1093/cid/cir692
European Pharmacopoeia. European Pharmacopoeia (Ph. Eur.): Supplement 6.3, Sterility., Reference 01/2009:20601 (2009).
Japanese Pharmacopoeia, Japanese Pharmacopoeia. Japanese Pharmacopoeia (JP): the 4.06 Sterility Test as It Appeared in the Partial Revision of the JP 15th Edition, Made Official March 31, 2009, by the Ministry of Health, Labour and Welfare Ministerial Notification No. 190 (2009).
United States Pharmacopeia (USP). United States Pharmacopeia (USP): sterility tests as presented in pharmacopeial forum, interim revision announcement No. 6. 34 (6), December 1, 2008, Official on May 1, 2009 (2008).
Banks, J. et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch. Virol. 146, 963–973 (2001).
pubmed: 11448033
doi: 10.1007/s007050170128
Rebel, J. M. et al. Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: small differences in general acute responses. Vet. Res. 42, 10 (2011).
pubmed: 21314972
pmcid: 3037890
doi: 10.1186/1297-9716-42-10
Trapp, S. et al. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol. J. 15, 55 (2018).
pubmed: 29587792
pmcid: 5870492
doi: 10.1186/s12985-018-0960-4
Ask, B., van der Waaij, E. H., Glass, E. J. & Bishop, S. C. Modeling immunocompetence development and immunoresponsiveness to challenge in chicks. Poult. Sci. 86, 1336–1350 (2007).
pubmed: 17575180
doi: 10.1093/ps/86.7.1336
Esnault, E. et al. A novel chicken lung epithelial cell line: characterization and response to low pathogenicity avian influenza virus. Virus Res. 159, 32–42 (2011).
pubmed: 21557972
doi: 10.1016/j.virusres.2011.04.022
Trapp, S. et al. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J. Gen. Virol. 95, 1233–1243 (2014).
pubmed: 24694396
doi: 10.1099/vir.0.063776-0
Fouchier, R. A. M. et al. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J. Clin. Microbiol. 38, 4096–4101 (2000).
pubmed: 11060074
pmcid: 87547
doi: 10.1128/JCM.38.11.4096-4101.2000
Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111, 2247–2252 (2014).
pubmed: 24390544
pmcid: 3926023
doi: 10.1073/pnas.1322269111
Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).
pubmed: 12840228
doi: 10.1093/jn/133.7.2485S
Hauser, A. et al. Efficient extraction from mice feces for NMR metabolomics measurements with special emphasis on SCFAs. Metabolites 9, E55 (2019).
doi: 10.3390/metabo9030055
Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. 99, 1443–1448 (2002).
pubmed: 11818553
pmcid: 122210
doi: 10.1073/pnas.032652399
Del Vesco, A. P., Jang, H. J., Monson, M. S. & Lamont, S. J. Role of the chicken oligoadenylate synthase-like gene during in vitro Newcastle disease virus infection. Poult. Sci. 100, 101067 (2021).
pubmed: 33752069
pmcid: 8005822
doi: 10.1016/j.psj.2021.101067
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).
pubmed: 31066453
pmcid: 6602461
doi: 10.1093/nar/gkz369
Zheng, W. et al. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 3, 48 (2015).
pubmed: 26437933
pmcid: 4593206
doi: 10.1186/s40168-015-0110-9
Escudié, F. et al. FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics 34, 1287–1294 (2018).
pubmed: 29228191
doi: 10.1093/bioinformatics/btx791
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).
pubmed: 25276506
pmcid: 4178461
doi: 10.7717/peerj.593
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
Hofmann, T. & Schmucker, S. Characterization of chicken leukocyte subsets from lymphatic tissue by flow cytometry. Cytom. Pt A 99, 289–300 (2021).
doi: 10.1002/cyto.a.24214
Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627–640 (2013).
doi: 10.3390/d5030627
Glendinning, L., Chintoan-Uta, C., Stevens, M. P. & Watson, M. Effect of cecal microbiota transplantation between different broiler breeds on the chick flora in the first week of life. Poult. Sci. 101, 101624 (2022).
pubmed: 34936955
doi: 10.1016/j.psj.2021.101624
Kubasova, T. et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One 14, e0212446 (2019).
pubmed: 30840648
pmcid: 6402632
doi: 10.1371/journal.pone.0212446
Li, Y., Jin, L. & Chen, T. The effects of secretory IgA in the mucosal immune system. Biomed. Res. Int 2020, 2032057 (2020).
pubmed: 31998782
pmcid: 6970489
Zang, W. & Zheng, X. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radic. Biol. Med. 160, 768–774 (2020).
pubmed: 32950687
pmcid: 7497778
doi: 10.1016/j.freeradbiomed.2020.09.016
Shao, J. & Sheng, H. Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology 151, 3728–3737 (2010).
pubmed: 20534719
pmcid: 2940516
doi: 10.1210/en.2010-0319
Kaspers, B., Schat, K. A., Göbel, T. & Vervelde, L. Avian Immunology. 3rd edn. (Elsevier Academic Press, London, 2022).
Liang, X. et al. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J. 33, 3562–3574 (2019).
pubmed: 30462529
doi: 10.1096/fj.201802002R
Sutton, K. et al. Visualisation and characterisation of mononuclear phagocytes in the chicken respiratory tract using CSF1R-transgenic chickens. Vet. Res. 49, 104 (2018).
pubmed: 30305141
pmcid: 6389226
doi: 10.1186/s13567-018-0598-7
Reese, S., Dalamani, G. & Kaspers, B. The avian lung-associated immune system: a review. Vet. Res. 37, 311–324 (2006).
pubmed: 16611550
doi: 10.1051/vetres:2006003
Flach, H. et al. Mzb1 protein regulates calcium homeostasis, antibody secretion, and integrin activation in innate-like B cells. Immunity 33, 723–735 (2010).
pubmed: 21093319
pmcid: 3125521
doi: 10.1016/j.immuni.2010.11.013
Koskela, K. et al. Identification of a novel cytokine-like transcript differentially expressed in avian γδ T cells. Immunogenetics 55, 845–854 (2004).
pubmed: 14760511
doi: 10.1007/s00251-004-0643-8
Mazewski, C., Perez, R. E., Fish, E. N. & Platanias, L. C. Type I interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways. Front. Immunol. 11, 606456 (2020).
Pfister S., Kuettel V., Ferrero E. granulator: Rapid benchmarking of methods for *in silico* deconvolution of bulk RNA-seq data. R package version 1.12.0. Granulator. ([object Object]). https://doi.org/10.18129/B9.BIOC.GRANULATOR (2024).
Borowska, D. et al. Highly multiplexed quantitative PCR-based platform for evaluation of chicken immune responses. PLoS One 14, e0225658 (2019).
pubmed: 31794562
pmcid: 6890255
doi: 10.1371/journal.pone.0225658
Zhang, L., Liu, C., Jiang, Q. & Yin, Y. Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32, 159–169 (2021).
pubmed: 33461886
doi: 10.1016/j.tem.2020.12.003
Salvi, P. S. & Cowles, R. A. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease. Cells 10, 1775 (2021).
pubmed: 34359944
pmcid: 8304699
doi: 10.3390/cells10071775
Martin-Gallausiaux, C. et al. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 9, 2838 (2018).
Jiang, Y. et al. Endothelial aquaporin-1 (AQP1) expression is regulated by transcription factor Mef2c. Mol. Cells 39, 292–298 (2016).
pubmed: 26923194
pmcid: 4844935
doi: 10.14348/molcells.2016.2223
He, J., Li, D., Zhou, J., Zhu, Y. & Yu, B. SP1-mediated upregulation of lncRNA LMCD1-AS1 functions a ceRNA for miR-106b-5p to facilitate osteosarcoma progression. Biochem. Biophys. Res. Commun. 526, 670–677 (2020).
pubmed: 32248969
doi: 10.1016/j.bbrc.2020.03.151
Munier, S. et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J. Virol. 84, 940–952 (2010).
pubmed: 19889765
doi: 10.1128/JVI.01581-09
Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).
pubmed: 27231050
pmcid: 5541232
doi: 10.1038/nri.2016.42
Glendinning, L., Watson, K. A. & Watson, M. Development of the duodenal, ileal, jejunal and caecal microbiota in chickens. Anim. Microbiome 1, 17 (2019).
pubmed: 33499941
pmcid: 7807437
doi: 10.1186/s42523-019-0017-z
Nie, K. et al. Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species. Front. Cell. Infection Microbiology 11, (2021).
Ruan, G. et al. Roseburia intestinalis and its metabolite butyrate inhibit colitis and upregulate TLR5 through the SP3 signaling Pathway. Nutrients 14, 3041 (2022).
pubmed: 35893896
pmcid: 9332583
doi: 10.3390/nu14153041
Kang, X. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8 + T cells. Gut. 72, 2112–2122 (2023).
pubmed: 37491158
doi: 10.1136/gutjnl-2023-330291
Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).
pubmed: 24390308
doi: 10.1038/nm.3444
Schroeder, B. O. & Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).
pubmed: 27711063
doi: 10.1038/nm.4185
Kogut, M. H. The gut microbiota and host innate immunity: regulators of host metabolism and metabolic diseases in poultry?1 1Presented as a part of the Informal Nutrition Symposium “Metabolic Responses to Nutrition and Modifiers” at the Poultry Science Association’s annual meeting in Athens, Georgia, July 9, 2012. J. Appl. Poult. Res. 22, 637–646 (2013).
doi: 10.3382/japr.2013-00741
Yitbarek, A. et al. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 37, 6640–6647 (2019).
pubmed: 31542262
doi: 10.1016/j.vaccine.2019.09.046
Cowieson, A. J. Comparative biology of germ-free and conventional poultry. Poult. Sci. 101, 102105 (2022).
pubmed: 36057194
pmcid: 9450149
doi: 10.1016/j.psj.2022.102105
Mitsuhiro, F. & Jun-ichi, O. Nutritional and physiological characteristics in germ-free chickens. Comp. Biochem. Physiol. Part A: Physiol. 109, 547–556 (1994).
doi: 10.1016/0300-9629(94)90193-7
den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
doi: 10.1194/jlr.R036012
González Hernández, M. A., Canfora, E. E., Jocken, J. W. E. & Blaak, E. E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11, 1943 (2019).
pmcid: 6723943
doi: 10.3390/nu11081943
Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut. Microbes 7, 189–200 (2016).
pubmed: 26963409
pmcid: 4939913
doi: 10.1080/19490976.2015.1134082
Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011–3021.e4 (2019).
pubmed: 31533027
pmcid: 6934407
doi: 10.1016/j.celrep.2019.08.034
Li, P., Yin, Y.-L., Li, D., Kim, S. W. & Wu, G. Amino acids and immune function. Br. J. Nutr. 98, 237–252 (2007).
pubmed: 17403271
doi: 10.1017/S000711450769936X
Trompette, A. et al. Dietary fiber confers protection against Flu by shaping Ly6c-patrolling monocyte hematopoiesis and CD8+T cell metabolism. Immunity 48, 992–1005.e8 (2018).
pubmed: 29768180
doi: 10.1016/j.immuni.2018.04.022
Hanson, C. et al. The relationship between dietary fiber intake and lung function in the National Health and Nutrition Examination surveys. Ann. ATS 13, 643–650 (2016).
doi: 10.1513/AnnalsATS.201509-609OC
Marsland, B. J., Trompette, A. & Gollwitzer, E. S. The gut–lung axis in respiratory disease. Ann. ATS 12, S150–S156 (2015).
doi: 10.1513/AnnalsATS.201503-133AW
Ayala, A. V. et al. Commensal bacteria promote type I interferon signaling to maintain immune tolerance. https://www.biorxiv.org/content/10.1101/2021.10.21.464743v2 (2022).
Shepard, J. D. et al. The Structure and immune regulatory implications of the ubiquitin-like tandem domain within an Avian 2’−5’ oligoadenylate synthetase-like protein. Front. Immunol. 12, 1664–3224 (2022).
Magor, K. E. et al. Defense genes missing from the flight division. Dev. Comp. Immunol. 41, 377–388 (2013).
pubmed: 23624185
pmcid: 7172724
doi: 10.1016/j.dci.2013.04.010
dos Santos, P. F. & Mansur, D. S. Beyond ISGlylation: functions of free intracellular and extracellular ISG15. J. Interferon Cytokine Res. 37, 246–253 (2017).
pubmed: 28467275
doi: 10.1089/jir.2016.0103
Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral. Immun. Immun. 37, 158–170 (2012).
Bradley, K. C. et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 28, 245–256.e4 (2019).
pubmed: 31269444
doi: 10.1016/j.celrep.2019.05.105
Wirusanti, N. I., Baldridge, M. T. & Harris, V. C. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol. 30, 778–792 (2022).
pubmed: 35135717
pmcid: 9344482
doi: 10.1016/j.tim.2022.01.007
Evseev, D. & Magor, K. E. Innate immune responses to avian influenza viruses in ducks and chickens. Vet. Sci. 6, 5 (2019).
pubmed: 30634569
pmcid: 6466002
Han, X., Bertzbach, L. D. & Veit, M. Mimicking the passage of avian influenza viruses through the gastrointestinal tract of chickens. Vet. Microbiol. 239, 108462 (2019).
pubmed: 31767100
pmcid: 7126190
doi: 10.1016/j.vetmic.2019.108462
Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).
pubmed: 21402903
pmcid: 3069176
doi: 10.1073/pnas.1019378108
Yitbarek, A. et al. Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2. Benef. Microbes 9, 417–427 (2018).
pubmed: 29380643
doi: 10.3920/BM2017.0088
Chemudupati, M. et al. Butyrate reprograms expression of specific interferon-stimulated genes. J. Virol. 94, e00326–20 (2020).
pubmed: 32461320
pmcid: 7394905
doi: 10.1128/JVI.00326-20
Klampfer, L., Huang, J., Sasazuki, T., Shirasawa, S. & Augenlicht, L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol. Cancer Res. 1, 855–862 (2003).
pubmed: 14517348
Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).
pubmed: 30467427
doi: 10.1038/s41580-018-0081-3
Meslin, C. et al. Expanding duplication of free fatty acid receptor-2 (GPR43) genes in the chicken genome. Genome Biol. Evol. 7, 1332–1348 (2015).
pubmed: 25912043
pmcid: 4453067
doi: 10.1093/gbe/evv072
Tan, N. Y. & Khachigian, L. M. Sp1 phosphorylation and its regulation of gene transcription. Mol. Cell Biol. 29, 2483–2488 (2009).
pubmed: 19273606
pmcid: 2682032
doi: 10.1128/MCB.01828-08
Marin, M., Karis, A., Visser, P., Grosveld, F. & Philipsen, S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89, 619–628 (1997).
pubmed: 9160753
doi: 10.1016/S0092-8674(00)80243-3
Kantor, B., Ma, H., Webster-Cyriaque, J., Monahan, P. E. & Kafri, T. Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc. Natl Acad. Sci. USA 106, 18786–18791 (2009).
pubmed: 19843699
pmcid: 2773968
doi: 10.1073/pnas.0905859106
Tolnay, A.-E. et al. Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Arch. Virol. 155, 905–914 (2010).
Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).
pubmed: 34019663
pmcid: 8265181
doi: 10.1093/nar/gkab382
Hulsegge, I., Kommadath, A. & Smits, M. A. Globaltest and GOEAST: two different approaches for Gene Ontology analysis. BMC Proc. 3, S10 (2009).
pubmed: 19615110
pmcid: 2712740
doi: 10.1186/1753-6561-3-S4-S10
Kolberg, L. et al. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207–W212 (2023).
pubmed: 37144459
pmcid: 10320099
doi: 10.1093/nar/gkad347