Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
19 Sep 2024
Historique:
received: 01 05 2024
accepted: 09 09 2024
revised: 05 09 2024
medline: 20 9 2024
pubmed: 20 9 2024
entrez: 19 9 2024
Statut: aheadofprint

Résumé

One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.

Identifiants

pubmed: 39300273
doi: 10.1038/s41386-024-01993-1
pii: 10.1038/s41386-024-01993-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : DA045771

Informations de copyright

© 2024. The Author(s).

Références

Skolnick P. The opioid epidemic: crisis and solutions. Annu Rev Pharm Toxicol. 2018;58:143–59.
doi: 10.1146/annurev-pharmtox-010617-052534
Lee YK, Gold MS, Blum K, Thanos PK, Hanna C, Fuehrlein BS. Opioid use disorder: current trends and potential treatments. Front Public Health. 2023;11:1274719.
pubmed: 38332941 doi: 10.3389/fpubh.2023.1274719
Volkow ND, Blanco C. Fentanyl and other opioid use disorders: treatment and research needs. Am J Psychiatry. 2023;180:410–17.
pubmed: 37259512 doi: 10.1176/appi.ajp.20230273
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.
pubmed: 27475769 pmcid: 6135092 doi: 10.1016/S2215-0366(16)00104-8
Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci. 2020;21:625–43.
pubmed: 33024318 doi: 10.1038/s41583-020-0378-z
Vanderschuren LJMJ, Ahmed SH. Animal models of the behavioral symptoms of substance use disorders. Cold Spring Harb Perspect Med. 2021;11:a040287.
pubmed: 32513674 pmcid: 8327824 doi: 10.1101/cshperspect.a040287
Vanderschuren LJMJ, Minnaard AM, Smeets JAS, Lesscher HMB. Punishment models of addictive behavior. Curr Opin Behav Sci. 2017;13:77–84.
doi: 10.1016/j.cobeha.2016.10.007
Jean-Richard-Dit-Bressel P, Killcross S, McNally GP. Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology. 2018;43:1639–50.
pubmed: 29703994 pmcid: 6006171 doi: 10.1038/s41386-018-0047-3
McNally GP, Jean-Richard-Dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry. 2023;28:2228–37.
pubmed: 36997610 pmcid: 10611585 doi: 10.1038/s41380-023-02040-z
Marchant NJ, Campbell EJ, Kaganovsky K. Punishment of alcohol-reinforced responding in alcohol preferring P rats reveals a bimodal population: Implications for models of compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:68–77.
pubmed: 28754407 doi: 10.1016/j.pnpbp.2017.07.020
Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62.
pubmed: 23552889 doi: 10.1038/nature12024
Durand A, Girardeau P, Freese L, Ahmed SH. Increased responsiveness to punishment of cocaine self-administration after experience with high punishment. Neuropsychopharmacology. 2022;47:444–53.
pubmed: 34429520 doi: 10.1038/s41386-021-01159-3
Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc Natl Acad Sci USA. 2019;116:9066–71.
pubmed: 30988198 pmcid: 6500166 doi: 10.1073/pnas.1819978116
Giuliano C, Belin D, Everitt BJ. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J Neurosci. 2019;39:1744–54.
pubmed: 30617206 pmcid: 6391574
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Escalated Oxycodone self-administration and punishment: differential expression of opioid receptors and immediate early genes in the rat dorsal striatum and prefrontal cortex. Front Neurosci. 2019;13:1392.
pubmed: 31998063 doi: 10.3389/fnins.2019.01392
McElroy BD, Li C, McCloskey NS, Kirby LG. Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiol Behav. 2023;271:114322.
pubmed: 37573960 doi: 10.1016/j.physbeh.2023.114322
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of Serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2022;42:1671–92.
pubmed: 33651238 doi: 10.1007/s10571-021-01064-9
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60.
pubmed: 26286655 pmcid: 4561406 doi: 10.1101/lm.037317.114
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev. 2021;128:282–93.
pubmed: 34139249 pmcid: 8335358 doi: 10.1016/j.neubiorev.2021.06.022
Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun. 2016;7:10503.
pubmed: 26818705 pmcid: 4738365 doi: 10.1038/ncomms10503
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, et al. Anatomically defined and functionally distinct dorsal Raphe Serotonin sub-systems. Cell. 2018;175:472–87.e20.
pubmed: 30146164 pmcid: 6173627 doi: 10.1016/j.cell.2018.07.043
Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360–74.
pubmed: 24656254 pmcid: 4411946 doi: 10.1016/j.neuron.2014.02.010
McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, et al. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep. 2014;8:1857–69.
pubmed: 25242321 pmcid: 4181379 doi: 10.1016/j.celrep.2014.08.037
Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A, Tabuchi S, et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr Biol. 2014;24:2033–40.
pubmed: 25155504 doi: 10.1016/j.cub.2014.07.041
Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301.
pubmed: 20107431 pmcid: 3055347 doi: 10.1038/npp.2009.233
Ineichen C, Sigrist H, Spinelli S, Lesch KP, Sautter E, Seifritz E, et al. Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology. 2012;63:1012–21.
pubmed: 22824190 doi: 10.1016/j.neuropharm.2012.07.025
Li C, McCloskey N, Phillips J, Simmons SJ, Kirby LG. CRF-5-HT interactions in the dorsal raphe nucleus and motivation for stress-induced opioid reinstatement. Psychopharmacology. 2021;238:29–40.
pubmed: 33231727 doi: 10.1007/s00213-020-05652-3
Li C, Staub DR, Kirby LG. Role of GABA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats. Psychopharmacology. 2013;230:537–45.
pubmed: 23812764 doi: 10.1007/s00213-013-3182-x
Li C, Frantz KJ. Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence. Psychopharmacology. 2009;204:725–33.
pubmed: 19326103 doi: 10.1007/s00213-009-1502-y
Weber T, Schonig K, Tews B, Bartsch D. Inducible gene manipulations in brain serotonergic neurons of transgenic rats. PLoSOne. 2011;6:e28283.
doi: 10.1371/journal.pone.0028283
Li C, Kirby LG. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Eur Neuropsychopharmacol. 2016;26:45–54.
pubmed: 26640169 doi: 10.1016/j.euroneuro.2015.11.009
Roberts DC, Bennett SA. Heroin self-administration in rats under a progressive ratio schedule of reinforcement. Psychopharmacology. 1993;111:215–8.
pubmed: 7870955 doi: 10.1007/BF02245526
Inan S, Eisenstein TK, Watson MN, Doura M, Meissler JJ, Tallarida CS, et al. Coadministration of Chemokine receptor antagonists with morphine potentiates Morphine’s analgesic effect on incisional pain in rats. J Pharm Exp Ther. 2018;367:433–41.
doi: 10.1124/jpet.118.252890
Domi E, Xu L, Toivainen S, Nordeman A, Gobbo F, Venniro M, et al. A neural substrate of compulsive alcohol use. Sci Adv. 2021;7:eabg9045.
pubmed: 34407947 pmcid: 8373126 doi: 10.1126/sciadv.abg9045
Toivainen S, Xu L, Gobbo F, Della Valle A, Coppola A, Heilig M, et al. Different mechanisms underlie compulsive alcohol self-administration in male and female rats. Biol Sex Differ. 2024;15:17.
pubmed: 38368341 pmcid: 10874042 doi: 10.1186/s13293-024-00592-5
Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: Basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol. 1994;2:244–68.
doi: 10.1037/1064-1297.2.3.244
Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N. Engl J Med. 2016;374:363–71.
pubmed: 26816013 pmcid: 6135257 doi: 10.1056/NEJMra1511480
Panlilio LV, Thorndike EB, Schindler CW. Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharmacology. 2003;168:229–35.
pubmed: 12845420 doi: 10.1007/s00213-002-1193-0
Negishi K, Fredriksson I, Bossert JM, Zangen A, Shaham Y. Relapse after electric barrier-induced voluntary abstinence: A review. Curr Opin Neurobiol. 2024;86:102856.
pubmed: 38508102 doi: 10.1016/j.conb.2024.102856
Borges C, Charles J, Shalev U. A Procedure to Study Stress-induced Relapse of Heroin Seeking after Punishment-imposed Abstinence. J Vis Exp. 2022;23. https://doi.org/10.3791/63657 .
Shaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. JNeurosci. 1996;16:1957–63.
doi: 10.1523/JNEUROSCI.16-05-01957.1996
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019;44:465–77.
pubmed: 30293087 doi: 10.1038/s41386-018-0234-2
Pelloux Y, Everitt BJ, Dickinson A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology. 2007;194:127–37.
pubmed: 17514480 doi: 10.1007/s00213-007-0805-0
Jean-Richard-Dit-Bressel P, Ma C, Bradfield LA, Killcross S, McNally GP. Punishment insensitivity emerges from impaired contingency detection, not aversion insensitivity or reward dominance. Elife. 2019;8:e52765.
pubmed: 31769756 pmcid: 6890457 doi: 10.7554/eLife.52765
Jean-Richard-Dit-Bressel P, Lee JC, Liew SX, Weidemann G, Lovibond PF, McNally GP. Punishment insensitivity in humans is due to failures in instrumental contingency learning. Elife. 2021;10:e69594.
pubmed: 34085930 pmcid: 8177883 doi: 10.7554/eLife.69594
Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science. 2004;305:1014–17.
pubmed: 15310906 doi: 10.1126/science.1099020
Domi A, Stopponi S, Domi E, Ciccocioppo R, Cannella N. Sub-dimensions of alcohol use disorder in alcohol preferring and non-preferring rats, a comparative study. Front Behav Neurosci. 2019;13:3.
pubmed: 30760988 pmcid: 6364792 doi: 10.3389/fnbeh.2019.00003
Skupio U, Sikora M, Korostynski M, Wawrzczak-Bargiela A, Piechota M, Ficek J, et al. Behavioral and transcriptional patterns of protracted opioid self-administration in mice. Addict Biol. 2017;22:1802–16.
pubmed: 27578564 doi: 10.1111/adb.12449
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, et al. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci. 2023;26:1868–79.
pubmed: 37798411 pmcid: 10620093 doi: 10.1038/s41593-023-01452-y
Lemos JC, Zhang G, Walsh T, Kirby LG, Akanwa A, Brooks-Kayal A, et al. Stress hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF mediated responses. Neuropsychopharmacology. 2010;36:721–34.
Staub DR, Lunden JW, Cathel AM, Dolben EL, Kirby LG. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Psychoneuroendocrinology. 2012;37:859–70.
pubmed: 22047957 doi: 10.1016/j.psyneuen.2011.10.002
Domi E, Xu L, Toivainen S, Wiskerke J, Coppola A, Holm L, et al. Activation of GABA B receptors in central amygdala attenuates activity of PKCδ + neurons and suppresses punishment-resistant alcohol self-administration in rats. Neuropsychopharmacology. 2023;48:1386–95.
pubmed: 36739350 pmcid: 10354045 doi: 10.1038/s41386-023-01543-1
Krasnova IN, Gerra MC, Walther D, Jayanthi S, Ladenheim B, McCoy MT, et al. Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Sci Rep. 2017;7:8331.
pubmed: 28827541 pmcid: 5566486 doi: 10.1038/s41598-017-08898-8
Daiwile AP, McCoy MT, Ladenheim B, Subramaniam J, Cadet JL. Incubation of methamphetamine craving in punishment-resistant individuals is associated with activation of specific gene networks in the rat dorsal striatum. Mol Psychiatry. 2024;29:1990–2000.
Okaty BW, Commons KG, Dymecki SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci. 2019;20:397–424.
pubmed: 30948838 doi: 10.1038/s41583-019-0151-3
Andrade R, Haj-Dahmane S. Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci. 2013;4:22–5.
pubmed: 23336040 pmcid: 3547477 doi: 10.1021/cn300224n
Kirby LG, Zeeb FD, Winstanley CA. Contributions of serotonin in addiction vulnerability. Neuropharmacology. 2011;61:421–32.
pubmed: 21466815 pmcid: 3110503 doi: 10.1016/j.neuropharm.2011.03.022
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev. 2011;35:1419–49.
pubmed: 21402098 doi: 10.1016/j.neubiorev.2011.03.005
Hu H. Reward and Aversion. Annu Rev Neurosci. 2016;39:297–324.
pubmed: 27145915 doi: 10.1146/annurev-neuro-070815-014106
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166:1023–35.
pubmed: 20109531 doi: 10.1016/j.neuroscience.2010.01.036
Nagai Y, Takayama K, Nishitani N, Andoh C, Koda M, Shirakawa H, et al. The Role of Dorsal Raphe Serotonin neurons in the balance between reward and aversion. Int J Mol Sci. 2020;21:2160.
pubmed: 32245184 pmcid: 7139834 doi: 10.3390/ijms21062160
Miyazaki K, Miyazaki KW, Yamanaka A, Tokuda T, Tanaka KF, Doya K. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat Commun. 2018;9:2048.
pubmed: 29858574 pmcid: 5984631 doi: 10.1038/s41467-018-04496-y
Bernabe CS, Caliman IF, Truitt WA, Molosh AI, Lowry CA, Hay-Schmidt A, et al. Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. J Psychopharmacol. 2020;34:400–11.
pubmed: 32153226 pmcid: 9678127 doi: 10.1177/0269881119900981
Bernabe CS, Caliman IF, de Abreu ARR, Molosh AI, Truitt WA, Shekhar A, et al. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses. Transl Psychiatry. 2024;14:60.
pubmed: 38272876 pmcid: 10811332 doi: 10.1038/s41398-024-02769-3
Sengupta A, Holmes A. A discrete dorsal Raphe to Basal Amygdala 5-HT circuit calibrates aversive memory. Neuron. 2019;103:489–505.e7.
pubmed: 31204082 pmcid: 6687558 doi: 10.1016/j.neuron.2019.05.029
Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology. 2020;167:107703.
pubmed: 31299228 doi: 10.1016/j.neuropharm.2019.107703
Fonseca MS, Murakami M, Mainen ZF. Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr Biol. 2015;25:306–15.
pubmed: 25601545 doi: 10.1016/j.cub.2014.12.002
Arnold JM, Roberts DC. A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharm Biochem Behav. 1997;57:441–7.
doi: 10.1016/S0091-3057(96)00445-5
Loh EA, Roberts DC. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology. 1990;101:262–66.
pubmed: 2349367 doi: 10.1007/BF02244137
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell. 2018;175:472–487.

Auteurs

Chen Li (C)

Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.

Nicholas S McCloskey (NS)

Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.

Saadet Inan (S)

Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.

Lynn G Kirby (LG)

Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA. lkirby@temple.edu.

Classifications MeSH