Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
19 Sep 2024
19 Sep 2024
Historique:
received:
01
05
2024
accepted:
09
09
2024
revised:
05
09
2024
medline:
20
9
2024
pubmed:
20
9
2024
entrez:
19
9
2024
Statut:
aheadofprint
Résumé
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Identifiants
pubmed: 39300273
doi: 10.1038/s41386-024-01993-1
pii: 10.1038/s41386-024-01993-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : DA045771
Informations de copyright
© 2024. The Author(s).
Références
Skolnick P. The opioid epidemic: crisis and solutions. Annu Rev Pharm Toxicol. 2018;58:143–59.
doi: 10.1146/annurev-pharmtox-010617-052534
Lee YK, Gold MS, Blum K, Thanos PK, Hanna C, Fuehrlein BS. Opioid use disorder: current trends and potential treatments. Front Public Health. 2023;11:1274719.
pubmed: 38332941
doi: 10.3389/fpubh.2023.1274719
Volkow ND, Blanco C. Fentanyl and other opioid use disorders: treatment and research needs. Am J Psychiatry. 2023;180:410–17.
pubmed: 37259512
doi: 10.1176/appi.ajp.20230273
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.
pubmed: 27475769
pmcid: 6135092
doi: 10.1016/S2215-0366(16)00104-8
Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci. 2020;21:625–43.
pubmed: 33024318
doi: 10.1038/s41583-020-0378-z
Vanderschuren LJMJ, Ahmed SH. Animal models of the behavioral symptoms of substance use disorders. Cold Spring Harb Perspect Med. 2021;11:a040287.
pubmed: 32513674
pmcid: 8327824
doi: 10.1101/cshperspect.a040287
Vanderschuren LJMJ, Minnaard AM, Smeets JAS, Lesscher HMB. Punishment models of addictive behavior. Curr Opin Behav Sci. 2017;13:77–84.
doi: 10.1016/j.cobeha.2016.10.007
Jean-Richard-Dit-Bressel P, Killcross S, McNally GP. Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology. 2018;43:1639–50.
pubmed: 29703994
pmcid: 6006171
doi: 10.1038/s41386-018-0047-3
McNally GP, Jean-Richard-Dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry. 2023;28:2228–37.
pubmed: 36997610
pmcid: 10611585
doi: 10.1038/s41380-023-02040-z
Marchant NJ, Campbell EJ, Kaganovsky K. Punishment of alcohol-reinforced responding in alcohol preferring P rats reveals a bimodal population: Implications for models of compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:68–77.
pubmed: 28754407
doi: 10.1016/j.pnpbp.2017.07.020
Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62.
pubmed: 23552889
doi: 10.1038/nature12024
Durand A, Girardeau P, Freese L, Ahmed SH. Increased responsiveness to punishment of cocaine self-administration after experience with high punishment. Neuropsychopharmacology. 2022;47:444–53.
pubmed: 34429520
doi: 10.1038/s41386-021-01159-3
Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc Natl Acad Sci USA. 2019;116:9066–71.
pubmed: 30988198
pmcid: 6500166
doi: 10.1073/pnas.1819978116
Giuliano C, Belin D, Everitt BJ. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J Neurosci. 2019;39:1744–54.
pubmed: 30617206
pmcid: 6391574
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Escalated Oxycodone self-administration and punishment: differential expression of opioid receptors and immediate early genes in the rat dorsal striatum and prefrontal cortex. Front Neurosci. 2019;13:1392.
pubmed: 31998063
doi: 10.3389/fnins.2019.01392
McElroy BD, Li C, McCloskey NS, Kirby LG. Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiol Behav. 2023;271:114322.
pubmed: 37573960
doi: 10.1016/j.physbeh.2023.114322
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of Serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2022;42:1671–92.
pubmed: 33651238
doi: 10.1007/s10571-021-01064-9
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60.
pubmed: 26286655
pmcid: 4561406
doi: 10.1101/lm.037317.114
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev. 2021;128:282–93.
pubmed: 34139249
pmcid: 8335358
doi: 10.1016/j.neubiorev.2021.06.022
Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun. 2016;7:10503.
pubmed: 26818705
pmcid: 4738365
doi: 10.1038/ncomms10503
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, et al. Anatomically defined and functionally distinct dorsal Raphe Serotonin sub-systems. Cell. 2018;175:472–87.e20.
pubmed: 30146164
pmcid: 6173627
doi: 10.1016/j.cell.2018.07.043
Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360–74.
pubmed: 24656254
pmcid: 4411946
doi: 10.1016/j.neuron.2014.02.010
McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, et al. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep. 2014;8:1857–69.
pubmed: 25242321
pmcid: 4181379
doi: 10.1016/j.celrep.2014.08.037
Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A, Tabuchi S, et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr Biol. 2014;24:2033–40.
pubmed: 25155504
doi: 10.1016/j.cub.2014.07.041
Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301.
pubmed: 20107431
pmcid: 3055347
doi: 10.1038/npp.2009.233
Ineichen C, Sigrist H, Spinelli S, Lesch KP, Sautter E, Seifritz E, et al. Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology. 2012;63:1012–21.
pubmed: 22824190
doi: 10.1016/j.neuropharm.2012.07.025
Li C, McCloskey N, Phillips J, Simmons SJ, Kirby LG. CRF-5-HT interactions in the dorsal raphe nucleus and motivation for stress-induced opioid reinstatement. Psychopharmacology. 2021;238:29–40.
pubmed: 33231727
doi: 10.1007/s00213-020-05652-3
Li C, Staub DR, Kirby LG. Role of GABA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats. Psychopharmacology. 2013;230:537–45.
pubmed: 23812764
doi: 10.1007/s00213-013-3182-x
Li C, Frantz KJ. Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence. Psychopharmacology. 2009;204:725–33.
pubmed: 19326103
doi: 10.1007/s00213-009-1502-y
Weber T, Schonig K, Tews B, Bartsch D. Inducible gene manipulations in brain serotonergic neurons of transgenic rats. PLoSOne. 2011;6:e28283.
doi: 10.1371/journal.pone.0028283
Li C, Kirby LG. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Eur Neuropsychopharmacol. 2016;26:45–54.
pubmed: 26640169
doi: 10.1016/j.euroneuro.2015.11.009
Roberts DC, Bennett SA. Heroin self-administration in rats under a progressive ratio schedule of reinforcement. Psychopharmacology. 1993;111:215–8.
pubmed: 7870955
doi: 10.1007/BF02245526
Inan S, Eisenstein TK, Watson MN, Doura M, Meissler JJ, Tallarida CS, et al. Coadministration of Chemokine receptor antagonists with morphine potentiates Morphine’s analgesic effect on incisional pain in rats. J Pharm Exp Ther. 2018;367:433–41.
doi: 10.1124/jpet.118.252890
Domi E, Xu L, Toivainen S, Nordeman A, Gobbo F, Venniro M, et al. A neural substrate of compulsive alcohol use. Sci Adv. 2021;7:eabg9045.
pubmed: 34407947
pmcid: 8373126
doi: 10.1126/sciadv.abg9045
Toivainen S, Xu L, Gobbo F, Della Valle A, Coppola A, Heilig M, et al. Different mechanisms underlie compulsive alcohol self-administration in male and female rats. Biol Sex Differ. 2024;15:17.
pubmed: 38368341
pmcid: 10874042
doi: 10.1186/s13293-024-00592-5
Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: Basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol. 1994;2:244–68.
doi: 10.1037/1064-1297.2.3.244
Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N. Engl J Med. 2016;374:363–71.
pubmed: 26816013
pmcid: 6135257
doi: 10.1056/NEJMra1511480
Panlilio LV, Thorndike EB, Schindler CW. Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharmacology. 2003;168:229–35.
pubmed: 12845420
doi: 10.1007/s00213-002-1193-0
Negishi K, Fredriksson I, Bossert JM, Zangen A, Shaham Y. Relapse after electric barrier-induced voluntary abstinence: A review. Curr Opin Neurobiol. 2024;86:102856.
pubmed: 38508102
doi: 10.1016/j.conb.2024.102856
Borges C, Charles J, Shalev U. A Procedure to Study Stress-induced Relapse of Heroin Seeking after Punishment-imposed Abstinence. J Vis Exp. 2022;23. https://doi.org/10.3791/63657 .
Shaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. JNeurosci. 1996;16:1957–63.
doi: 10.1523/JNEUROSCI.16-05-01957.1996
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019;44:465–77.
pubmed: 30293087
doi: 10.1038/s41386-018-0234-2
Pelloux Y, Everitt BJ, Dickinson A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology. 2007;194:127–37.
pubmed: 17514480
doi: 10.1007/s00213-007-0805-0
Jean-Richard-Dit-Bressel P, Ma C, Bradfield LA, Killcross S, McNally GP. Punishment insensitivity emerges from impaired contingency detection, not aversion insensitivity or reward dominance. Elife. 2019;8:e52765.
pubmed: 31769756
pmcid: 6890457
doi: 10.7554/eLife.52765
Jean-Richard-Dit-Bressel P, Lee JC, Liew SX, Weidemann G, Lovibond PF, McNally GP. Punishment insensitivity in humans is due to failures in instrumental contingency learning. Elife. 2021;10:e69594.
pubmed: 34085930
pmcid: 8177883
doi: 10.7554/eLife.69594
Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science. 2004;305:1014–17.
pubmed: 15310906
doi: 10.1126/science.1099020
Domi A, Stopponi S, Domi E, Ciccocioppo R, Cannella N. Sub-dimensions of alcohol use disorder in alcohol preferring and non-preferring rats, a comparative study. Front Behav Neurosci. 2019;13:3.
pubmed: 30760988
pmcid: 6364792
doi: 10.3389/fnbeh.2019.00003
Skupio U, Sikora M, Korostynski M, Wawrzczak-Bargiela A, Piechota M, Ficek J, et al. Behavioral and transcriptional patterns of protracted opioid self-administration in mice. Addict Biol. 2017;22:1802–16.
pubmed: 27578564
doi: 10.1111/adb.12449
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, et al. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci. 2023;26:1868–79.
pubmed: 37798411
pmcid: 10620093
doi: 10.1038/s41593-023-01452-y
Lemos JC, Zhang G, Walsh T, Kirby LG, Akanwa A, Brooks-Kayal A, et al. Stress hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF mediated responses. Neuropsychopharmacology. 2010;36:721–34.
Staub DR, Lunden JW, Cathel AM, Dolben EL, Kirby LG. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Psychoneuroendocrinology. 2012;37:859–70.
pubmed: 22047957
doi: 10.1016/j.psyneuen.2011.10.002
Domi E, Xu L, Toivainen S, Wiskerke J, Coppola A, Holm L, et al. Activation of GABA B receptors in central amygdala attenuates activity of PKCδ + neurons and suppresses punishment-resistant alcohol self-administration in rats. Neuropsychopharmacology. 2023;48:1386–95.
pubmed: 36739350
pmcid: 10354045
doi: 10.1038/s41386-023-01543-1
Krasnova IN, Gerra MC, Walther D, Jayanthi S, Ladenheim B, McCoy MT, et al. Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Sci Rep. 2017;7:8331.
pubmed: 28827541
pmcid: 5566486
doi: 10.1038/s41598-017-08898-8
Daiwile AP, McCoy MT, Ladenheim B, Subramaniam J, Cadet JL. Incubation of methamphetamine craving in punishment-resistant individuals is associated with activation of specific gene networks in the rat dorsal striatum. Mol Psychiatry. 2024;29:1990–2000.
Okaty BW, Commons KG, Dymecki SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci. 2019;20:397–424.
pubmed: 30948838
doi: 10.1038/s41583-019-0151-3
Andrade R, Haj-Dahmane S. Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci. 2013;4:22–5.
pubmed: 23336040
pmcid: 3547477
doi: 10.1021/cn300224n
Kirby LG, Zeeb FD, Winstanley CA. Contributions of serotonin in addiction vulnerability. Neuropharmacology. 2011;61:421–32.
pubmed: 21466815
pmcid: 3110503
doi: 10.1016/j.neuropharm.2011.03.022
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev. 2011;35:1419–49.
pubmed: 21402098
doi: 10.1016/j.neubiorev.2011.03.005
Hu H. Reward and Aversion. Annu Rev Neurosci. 2016;39:297–324.
pubmed: 27145915
doi: 10.1146/annurev-neuro-070815-014106
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166:1023–35.
pubmed: 20109531
doi: 10.1016/j.neuroscience.2010.01.036
Nagai Y, Takayama K, Nishitani N, Andoh C, Koda M, Shirakawa H, et al. The Role of Dorsal Raphe Serotonin neurons in the balance between reward and aversion. Int J Mol Sci. 2020;21:2160.
pubmed: 32245184
pmcid: 7139834
doi: 10.3390/ijms21062160
Miyazaki K, Miyazaki KW, Yamanaka A, Tokuda T, Tanaka KF, Doya K. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat Commun. 2018;9:2048.
pubmed: 29858574
pmcid: 5984631
doi: 10.1038/s41467-018-04496-y
Bernabe CS, Caliman IF, Truitt WA, Molosh AI, Lowry CA, Hay-Schmidt A, et al. Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. J Psychopharmacol. 2020;34:400–11.
pubmed: 32153226
pmcid: 9678127
doi: 10.1177/0269881119900981
Bernabe CS, Caliman IF, de Abreu ARR, Molosh AI, Truitt WA, Shekhar A, et al. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses. Transl Psychiatry. 2024;14:60.
pubmed: 38272876
pmcid: 10811332
doi: 10.1038/s41398-024-02769-3
Sengupta A, Holmes A. A discrete dorsal Raphe to Basal Amygdala 5-HT circuit calibrates aversive memory. Neuron. 2019;103:489–505.e7.
pubmed: 31204082
pmcid: 6687558
doi: 10.1016/j.neuron.2019.05.029
Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology. 2020;167:107703.
pubmed: 31299228
doi: 10.1016/j.neuropharm.2019.107703
Fonseca MS, Murakami M, Mainen ZF. Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr Biol. 2015;25:306–15.
pubmed: 25601545
doi: 10.1016/j.cub.2014.12.002
Arnold JM, Roberts DC. A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharm Biochem Behav. 1997;57:441–7.
doi: 10.1016/S0091-3057(96)00445-5
Loh EA, Roberts DC. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology. 1990;101:262–66.
pubmed: 2349367
doi: 10.1007/BF02244137
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell. 2018;175:472–487.