Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects.

Cardiac myocyte Cyclic adenosine monophosphate Cytokines GLP-1 receptor Inflammation Liraglutide Matrix metalloproteinase Phosphodiesterase-4 inhibitor Signal transduction

Journal

Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160

Informations de publication

Date de publication:
21 Sep 2024
Historique:
received: 03 06 2024
accepted: 12 09 2024
revised: 09 09 2024
medline: 21 9 2024
pubmed: 21 9 2024
entrez: 21 9 2024
Statut: aheadofprint

Résumé

Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.

Sections du résumé

BACKGROUND BACKGROUND
Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast.
METHODS & RESULTS RESULTS
Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation.
CONCLUSIONS CONCLUSIONS
cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.

Identifiants

pubmed: 39305297
doi: 10.1007/s00011-024-01950-0
pii: 10.1007/s00011-024-01950-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NHLBI NIH HHS
ID : HL155718-01
Pays : United States
Organisme : American Foundation for Pharmaceutical Education
ID : 333325-2017

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Diz-Chaves Y, Mastoor Z, Spuch C, González-Matías LC, Mallo F. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int J Mol Sci. 2022;23(17):9583.
pubmed: 36076972 pmcid: 9455625 doi: 10.3390/ijms23179583
Klen J, Dolžan V. Glucagon-like peptide-1 receptor agonists in the management of type 2 diabetes mellitus and obesity: the impact of pharmacological properties and genetic factors. Int J Mol Sci. 2022;23(7):3451.
pubmed: 35408810 pmcid: 8998939 doi: 10.3390/ijms23073451
Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463–74.
pubmed: 36977782 doi: 10.1038/s41569-023-00849-3
Pandey S, Mangmool S, Parichatikanond W. Multifaceted roles of GLP-1 and its analogs: a review on molecular mechanisms with a cardiotherapeutic perspective. Pharmaceuticals (Basel). 2023;16(6):836.
pubmed: 37375783 doi: 10.3390/ph16060836
Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, Lazzaroni E, Assi E, Seelam AJ, El Essawy B, Jang J, Loretelli C, D’Addio F, Berra C, Ben Nasr M, Zuccotti G, Fiorina P. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. 2022;182: 106320.
pubmed: 35738455 doi: 10.1016/j.phrs.2022.106320
Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642.
pubmed: 27110066 pmcid: 4823510 doi: 10.1155/2016/3094642
Graaf Cd, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJ, Zhou C, Deng J, Wang MW. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013.
pubmed: 27630114 pmcid: 5050443 doi: 10.1124/pr.115.011395
Wang R, Wang N, Han Y, Xu J, Xu Z. Dulaglutide alleviates LPS-induced injury in cardiomyocytes. ACS Omega. 2021;6(12):8271–8.
pubmed: 33817486 pmcid: 8015136 doi: 10.1021/acsomega.0c06326
Nuamnaichati N, Mangmool S, Chattipakorn N, Parichatikanond W. Stimulation of GLP-1 receptor inhibits methylglyoxal-induced mitochondrial dysfunctions in H9c2 cardiomyoblasts: potential role of Epac/PI3K/Akt pathway. Front Pharmacol. 2020;29(11):805.
doi: 10.3389/fphar.2020.00805
Lu K, Chang G, Ye L, Zhang P, Li Y, Zhang D. Protective effects of extendin-4 on hypoxia/reoxygenation-induced injury in H9c2 cells. Mol Med Rep. 2015;12(2):3007–16.
pubmed: 25936390 doi: 10.3892/mmr.2015.3682
Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun. 2023;5(647):1–8.
Cui X, Liang H, Hao C, Jing X. Liraglutide preconditioning attenuates myocardial ischemia/ reperfusion injury via homer1 activation. Aging (Albany NY). 2021;13(5):6625–33.
pubmed: 33535171 doi: 10.18632/aging.202429
Wu XM, Ou QY, Zhao W, Liu J, Zhang H. The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway. Exp Clin Endocrinol Diabetes. 2014;122(10):608–14.
pubmed: 25140997 doi: 10.1055/s-0034-1384584
Ding W, Chang WG, Guo XC, Liu Y, Xiao DD, Ding D, Wang JX, Zhang XJ. Exenatide protects against cardiac dysfunction by attenuating oxidative stress in the diabetic mouse heart. Front Endocrinol (Lausanne). 2019;5(10):202.
doi: 10.3389/fendo.2019.00202
Chang G, Liu J, Qin S, Jiang Y, Zhang P, Yu H, Lu K, Zhang N, Cao L, Wang Y, Li Y, Zhang D. Cardioprotection by exenatide: a novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int J Mol Med. 2018;41(3):1693–703.
pubmed: 29286061
Papasergi-Scott MM, Pérez-Hernández G, Batebi H, Gao Y, Eskici G, Seven AB, Panova O, Hilger D, Casiraghi M, He F, Maul L, Gmeiner P, Kobilka BK, Hildebrand PW, Skiniotis G. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature. 2024;629(8014):1182–91.
pubmed: 38480881 doi: 10.1038/s41586-024-07153-1
Willard FS, Sloop KW. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor. Exp Diabetes Res. 2012;2012: 470851.
pubmed: 22666230 pmcid: 3359799 doi: 10.1155/2012/470851
Tavares LP, Negreiros-Lima GL, Lima KM, Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: role of cAMP for the resolution of inflammation. Pharmacol Res. 2020;159:105030.
pubmed: 32562817 doi: 10.1016/j.phrs.2020.105030
Crowley EL, Gooderham MJ. Phosphodiesterase-4 inhibition in the management of psoriasis. Pharmaceutics. 2023;16(1):23.
pubmed: 38258034 pmcid: 10819567 doi: 10.3390/pharmaceutics16010023
Violi F, Castellani V, Menichelli D, Pignatelli P, Pastori D. Gut barrier dysfunction and endotoxemia in heart failure: a dangerous connubium? Am Heart J. 2023;264:40–8.
pubmed: 37301317 doi: 10.1016/j.ahj.2023.06.002
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol Rev. 2017;69(2):93–139.
pubmed: 28255005 pmcid: 5394921 doi: 10.1124/pr.116.013078
Danowitz M, De Leon DD. The role of GLP-1 signaling in hypoglycemia due to hyperinsulinism. Front Endocrinol (Lausanne). 2022;24(13): 863184.
doi: 10.3389/fendo.2022.863184
Kim GE, Kass DA. Cardiac phosphodiesterases and their modulation for treating heart disease. Handb Exp Pharmacol. 2017;243:249–69.
pubmed: 27787716 pmcid: 5665023 doi: 10.1007/164_2016_82
Tsai LC, Beavo JA. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr Opin Pharmacol. 2011;11(6):670–5.
pubmed: 21962440 pmcid: 4034742 doi: 10.1016/j.coph.2011.09.003
Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol. 2000;12(2):174–9.
pubmed: 10712916 doi: 10.1016/S0955-0674(99)00073-3
Turner MJ, Sato Y, Thomas DY, Abbott-Banner K, Hanrahan JW. Phosphodiesterase 8A regulates CFTR activity in airway epithelial cells. Cell Physiol Biochem. 2021;55(6):784–804.
pubmed: 34936285 doi: 10.33594/000000477
Han CK, Tien YC, Jine-Yuan Hsieh D, Ho TJ, Lai CH, Yeh YL, Hsuan Day C, Shen CY, Hsu HH, Lin JY, Huang CY. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environ Toxicol. 2017;32(3):754–63.
pubmed: 27098997 doi: 10.1002/tox.22275
Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem. 2024;272:116460.
pubmed: 38704943 doi: 10.1016/j.ejmech.2024.116460
Lee JK, Wang X, Wang J, Rosales JL, Lee KY. PKA inhibition kills L-asparaginase-resistant leukemic cells from relapsed acute lymphoblastic leukemia patients. Cell Death Discov. 2024;10(1):257.
pubmed: 38802344 pmcid: 11130271 doi: 10.1038/s41420-024-02028-w
Tomilin VN, Pyrshev K, Stavniichuk A, Hassanzadeh Khayyat N, Ren G, Zaika O, Khedr S, Staruschenko A, Mei FC, Cheng X, Pochynyuk O. Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight. 2022;7(3): e145653.
pubmed: 34914636 pmcid: 8855822 doi: 10.1172/jci.insight.145653
Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):651–62.
pubmed: 18604457 doi: 10.1111/j.1745-7270.2008.00438.x
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic adenosine monophosphate in cardiac and sympathoadrenal GLP-1 receptor signaling: focus on anti-inflammatory effects. Pharmaceutics. 2024;16(6):693.
pubmed: 38931817 pmcid: 11206770 doi: 10.3390/pharmaceutics16060693
Vila Petroff MG, Egan JM, Wang X, Sollott SJ. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001;89(5):445–52.
pubmed: 11532906 doi: 10.1161/hh1701.095716
Grammatika Pavlidou N, Dobrev S, Beneke K, Reinhardt F, Pecha S, Jacquet E, Abu-Taha IH, Schmidt C, Voigt N, Kamler M, Schnabel RB, Baczkó I, Garnier A, Reichenspurner H, Nikolaev VO, Dobrev D, Molina CE. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. Eur Heart J. 2023;44(27):2483–94.
pubmed: 36810794 pmcid: 10344654 doi: 10.1093/eurheartj/ehad086
Ang R, Mastitskaya S, Hosford PS, Basalay M, Specterman M, Aziz Q, Li Y, Orini M, Taggart P, Lambiase PD, Gourine A, Tinker A, Gourine AV. Modulation of cardiac ventricular excitability by GLP-1 (Glucagon-Like Peptide-1). Circ Arrhythm Electrophysiol. 2018;11(10): e006740.
pubmed: 30354404 pmcid: 6553567 doi: 10.1161/CIRCEP.118.006740
Sanin DE, Prendergast CT, Mountford AP. IL-10 Production in macrophages is regulated by a TLR-driven CREB-mediated mechanism that is linked to genes involved in cell metabolism. J Immunol. 2015;195(3):1218–32.
pubmed: 26116503 pmcid: 4505959 doi: 10.4049/jimmunol.1500146
Antonicelli F, De Coupade C, Russo-Marie F, Le Garrec Y. CREB is involved in mouse annexin A1 regulation by cAMP and glucocorticoids. Eur J Biochem. 2001;268(1):62–9.
pubmed: 11121103 doi: 10.1046/j.1432-1327.2001.01840.x
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799(10–12):775–87.
pubmed: 20493977 pmcid: 2955987 doi: 10.1016/j.bbagrm.2010.05.004
Lan YQ, Zhang C, Xiao JH, Zhuo YH, Guo H, Peng W, Ge J. Suppression of IkappaBalpha increases the expression of matrix metalloproteinase-2 in human ciliary muscle cells. Mol Vis. 2009;26(15):1977–87.
Takahashi N, Tetsuka T, Uranishi H, Okamoto T. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem. 2002;269(18):4559–65.
pubmed: 12230568 doi: 10.1046/j.1432-1033.2002.03157.x
Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation. Cells. 2016;5(1):12.
pubmed: 26999213 pmcid: 4810097 doi: 10.3390/cells5010012
Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G. Cyclic AMP: a selective modulator of NF-κB action. Cell Mol Life Sci. 2011;68(23):3823–41. https://doi.org/10.1007/s00018-011-0757-8 .
doi: 10.1007/s00018-011-0757-8 pubmed: 21744067 pmcid: 11114830
Verma S, Poulter NR, Bhatt DL, Bain SC, Buse JB, Leiter LA, Nauck MA, Pratley RE, Zinman B, Ørsted DD, Monk Fries T, Rasmussen S, Marso SP. Effects of liraglutide on cardiovascular outcomes in patients with type 2 diabetes mellitus with or without history of myocardial infarction or stroke. Circulation. 2018;138(25):2884–94.
pubmed: 30566004 doi: 10.1161/CIRCULATIONAHA.118.034516
Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975–83.
pubmed: 19151200 pmcid: 2661586 doi: 10.2337/db08-1193
Fang B, Liu F, Yu X, Luo J, Zhang X, Zhang T, Zhang J, Yang Y, Li X. Liraglutide alleviates myocardial ischemia-reperfusion injury in diabetic mice. Mol Cell Endocrinol. 2023;15(572): 111954.
doi: 10.1016/j.mce.2023.111954
Serraino GF, Jiritano F, Costa D, Ielapi N, Napolitano D, Mastroroberto P, Bracale UM, Andreucci M, Serra R. Metalloproteinases and hypertrophic cardiomyopathy: a systematic review. Biomolecules. 2023;13(4):665.
pubmed: 37189412 pmcid: 10136246 doi: 10.3390/biom13040665
Roldán V, Marín F, Gimeno JR, Ruiz-Espejo F, González J, Feliu E, García-Honrubia A, Saura D, de la Morena G, Valdés M, Vicente V. Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy. Am Heart J. 2008;156(1):85–91.
pubmed: 18585501 doi: 10.1016/j.ahj.2008.01.035
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol. 2023;16(7):623–30.
pubmed: 37403791 pmcid: 10529896 doi: 10.1080/17512433.2023.2233891
Huang H, Hong Q, Tan HL, Xiao CR, Gao Y. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells. Acta Pharmacol Sin. 2016;37(12):1543–54.
pubmed: 27665850 pmcid: 5260833 doi: 10.1038/aps.2016.88
Lugnier C. The complexity and multiplicity of the specific cAMP phosphodiesterase family: PDE4, open new adapted therapeutic approaches. Int J Mol Sci. 2022;23(18):10616.
pubmed: 36142518 pmcid: 9502408 doi: 10.3390/ijms231810616
Kranzler HR. Overview of alcohol use disorder. Am J Psychiatry. 2023;180(8):565–72.
pubmed: 37525595 doi: 10.1176/appi.ajp.20230488
Gutgesell RM, Nogueiras R, Tschöp MH, Müller TD. Dual and triple incretin-based co-agonists: novel therapeutics for obesity and diabetes. Diabetes Ther. 2024;15(5):1069–84.
pubmed: 38573467 pmcid: 11043266 doi: 10.1007/s13300-024-01566-x
Deng YW, Shu YG, Sun SL. miR-376a inhibits glioma proliferation and angiogenesis by regulating YAP1/VEGF signalling via targeting of SIRT1. Transl Oncol. 2022;15(1): 101270.
pubmed: 34808462 doi: 10.1016/j.tranon.2021.101270
Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med. 2007;13(3):315–23.
pubmed: 17322894 doi: 10.1038/nm1553
Adnani L, Kassouf J, Meehan B, Spinelli C, Tawil N, Nakano I, Rak J. Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells. Nat Commun. 2022;13(1):5494.
pubmed: 36123372 pmcid: 9485157 doi: 10.1038/s41467-022-33235-7
Watanabe N, Tamai R, Kiyoura Y. Alendronate augments lipid A-induced IL-1β release by ASC-deficient RAW264 cells via AP-1 activation. Exp Ther Med. 2023;26(6):577.
pubmed: 38023354 pmcid: 10655061 doi: 10.3892/etm.2023.12276

Auteurs

Renee A Stoicovy (RA)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Natalie Cora (N)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Arianna Perez (A)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Deepika Nagliya (D)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Giselle Del Calvo (G)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Teresa Baggio Lopez (TB)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Emma C Weinstein (EC)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Jordana I Borges (JI)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.

Jennifer Maning (J)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.
Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.

Anastasios Lymperopoulos (A)

Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA. al806@nova.edu.
, University Dr., HPD (Terry) Bldg./Room 1350, Fort Lauderdale, FL, 33328-2018, USA. al806@nova.edu.

Classifications MeSH