The hard problem of meta-learning is what-to-learn.


Journal

The Behavioral and brain sciences
ISSN: 1469-1825
Titre abrégé: Behav Brain Sci
Pays: England
ID NLM: 7808666

Informations de publication

Date de publication:
23 Sep 2024
Historique:
medline: 23 9 2024
pubmed: 23 9 2024
entrez: 23 9 2024
Statut: epublish

Résumé

Binz et al. highlight the potential of meta-learning to greatly enhance the flexibility of AI algorithms, as well as to approximate human behavior more accurately than traditional learning methods. We wish to emphasize a basic problem that lies underneath these two objectives, and in turn suggest another perspective of the required notion of "meta" in meta-learning: knowing what to learn.

Identifiants

pubmed: 39311527
doi: 10.1017/S0140525X24000268
pii: S0140525X24000268
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e161

Auteurs

Yosef Prat (Y)

The Cohn Institute for History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv, Israel yosefprat@gmail.com ehudlamm@post.tau.ac.ilhttps://www.ehudlamm.com.

Ehud Lamm (E)

The Cohn Institute for History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv, Israel yosefprat@gmail.com ehudlamm@post.tau.ac.ilhttps://www.ehudlamm.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH