The hard problem of meta-learning is what-to-learn.
Journal
The Behavioral and brain sciences
ISSN: 1469-1825
Titre abrégé: Behav Brain Sci
Pays: England
ID NLM: 7808666
Informations de publication
Date de publication:
23 Sep 2024
23 Sep 2024
Historique:
medline:
23
9
2024
pubmed:
23
9
2024
entrez:
23
9
2024
Statut:
epublish
Résumé
Binz et al. highlight the potential of meta-learning to greatly enhance the flexibility of AI algorithms, as well as to approximate human behavior more accurately than traditional learning methods. We wish to emphasize a basic problem that lies underneath these two objectives, and in turn suggest another perspective of the required notion of "meta" in meta-learning: knowing what to learn.
Identifiants
pubmed: 39311527
doi: 10.1017/S0140525X24000268
pii: S0140525X24000268
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM