Electrospray deposition of starch-containing laccase: A green technique for low-cost and eco-friendly biosensors.
Biosensor fabrication
Electrospray deposition
Immobilization
Laccase
Reuse
Starch
Journal
Biosensors & bioelectronics
ISSN: 1873-4235
Titre abrégé: Biosens Bioelectron
Pays: England
ID NLM: 9001289
Informations de publication
Date de publication:
23 Sep 2024
23 Sep 2024
Historique:
received:
24
05
2024
revised:
03
09
2024
accepted:
05
09
2024
medline:
25
9
2024
pubmed:
25
9
2024
entrez:
24
9
2024
Statut:
aheadofprint
Résumé
Recently a laccase-based biosensors with unprecedented reuse and storage capabilities in the detection of catechol compound has been manufactured using ambient Electrospray Deposition (ESD) technique. These biosensors showed to be reused up to 63 measurements on the same electrode just prepared at room temperature and pressure. In this new work the reasons behind such a high-performance functioning have been investigated by analysing the commercial sample of laccase with different chemical physics methods: Electrophoresis, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence and Nuclear Magnetic Resonance Spectroscopy. The analyses reveal the presence of the starch in the sample and its essential role as stabilizing agent. Indeed, comparing the performance of starch/laccase-based biosensors with starch-free/laccase-based biosensors, both produced via ESD, showed that the starch-free biosensors lost about 40% of their performance after just the first wash. This suggests that the presence of starch in the laccase sample is a key factor in providing the high wash and storage resistance, which are essential for the fabrication of such devices.
Identifiants
pubmed: 39316871
pii: S0956-5663(24)00764-4
doi: 10.1016/j.bios.2024.116758
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
116758Informations de copyright
Copyright © 2024 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.