Phosphopeptide-bridged NH
Titanium
/ chemistry
Biosensing Techniques
/ methods
Carbon
/ chemistry
Cyclic AMP-Dependent Protein Kinases
/ metabolism
Quantum Dots
/ chemistry
Phosphopeptides
/ analysis
Electrochemical Techniques
/ methods
Luminescent Measurements
/ methods
Humans
Limit of Detection
Fluorescent Dyes
/ chemistry
Modified gold electrode
Cys-kemptide
Electrochemiluminescence method
PKA-inhibitors
Protein kinase activity
Ti@NMg-CDs
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
25 Sep 2024
25 Sep 2024
Historique:
received:
18
06
2024
accepted:
14
09
2024
medline:
25
9
2024
pubmed:
25
9
2024
entrez:
25
9
2024
Statut:
epublish
Résumé
A novel electrochemiluminescence (ECL) method was developed for determination of protein kinase A (PKA) ultra-sensitively based on amidated nano-titanium (NH
Identifiants
pubmed: 39320530
doi: 10.1007/s00604-024-06711-8
pii: 10.1007/s00604-024-06711-8
doi:
Substances chimiques
Titanium
D1JT611TNE
titanium dioxide
15FIX9V2JP
Carbon
7440-44-0
Cyclic AMP-Dependent Protein Kinases
EC 2.7.11.11
Phosphopeptides
0
Fluorescent Dyes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
622Subventions
Organisme : he Natural Science Foundation of Shanxi Province, China
ID : (Grant No. 202203021222222 and 202203021212399)
Organisme : he Natural Science Foundation of Shanxi Province, China
ID : (Grant No. 202203021222222 and 202203021212399)
Organisme : he Natural Science Foundation of Shanxi Province, China
ID : (Grant No. 202203021222222 and 202203021212399)
Organisme : he Natural Science Foundation of Shanxi Province, China
ID : (Grant No. 202203021222222 and 202203021212399)
Organisme : he Natural Science Foundation of Shanxi Province, China
ID : (Grant No. 202203021222222 and 202203021212399)
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Ding G, Lei GJ, Yamaji N, Yokosho K, Mitani-Ueno N, Huang S, Ma JF (2020) Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis. Mol Plant 13(1):99–111. https://doi.org/10.1016/j.molp.2019.10.002
doi: 10.1016/j.molp.2019.10.002
pubmed: 31610248
Shroff R, Goetzl EJ (2024) Protein kinases – high yield targets for cancer and dementia drug discovery. Am J Med. https://doi.org/10.1016/j.amjmed.2024.06.016
doi: 10.1016/j.amjmed.2024.06.016
pubmed: 38925498
Ahmed M, Koo KM, Mainwaring PN, Carrascosa LG, Trau M (2020) Phosphoprotein biosensors for monitoring pathological protein structural changes. Trends Biotechnol 38(5):519–531. https://doi.org/10.1016/j.tibtech.2019.11.006
doi: 10.1016/j.tibtech.2019.11.006
pubmed: 31883917
Elgenaidi IS, Spiers JP (2019) Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: a potential therapeutic target? Pharmacol Ther 198:68–89. https://doi.org/10.1016/j.pharmthera.2019.02.011
doi: 10.1016/j.pharmthera.2019.02.011
pubmed: 30797822
Rana S, Blowers EC, Natarajan A (2015) Small molecule adenosine 5’-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 58(1):2–29. https://doi.org/10.1021/jm401994c
doi: 10.1021/jm401994c
pubmed: 25122135
Cui L, Li J, Xie X (2012) Rediocide A, an Insecticide, induces G-protein-coupled receptor desensitization via activation of conventional protein kinase C. J Nat Prod 75(6):1058–1062. https://doi.org/10.1021/np3000359
doi: 10.1021/np3000359
pubmed: 22650618
Roskoski R Jr (2020) Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res 152:104609. https://doi.org/10.1016/j.phrs.2019.104609
doi: 10.1016/j.phrs.2019.104609
pubmed: 31862477
Aponte AM, Phillips D, Harris RA, Blinova K, French S, Johnson DT, Balaban RS (2009) Chapter 4 32P labeling of protein phosphorylation and metabolite association in the mitochondria matrix 457:63–80. https://doi.org/10.1016/s0076-6879(09)05004-6
Eivazzadeh-Keihan R, Bahojb Noruzi E, Chidar E, Jafari M, Davoodi F, Kashtiaray A, Ghafori Gorab M, Masoud Hashemi S, Javanshir S, Ahangari Cohan R, Maleki A, Mahdavi M (2022) Applications of carbon-based conductive nanomaterials in biosensors. Chem Eng J 442:136183. https://doi.org/10.1016/j.cej.2022.136183
doi: 10.1016/j.cej.2022.136183
He S, Kyaw YME, Tan EKM, Bekale L, Kang MWC, Kim SS, Tan I, Lam KP, Kah JCY (2018) Quantitative and label-free detection of protein kinase A activity based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem 90(10):6071–6080. https://doi.org/10.1021/acs.analchem.7b05417
doi: 10.1021/acs.analchem.7b05417
pubmed: 29697974
Xiong X, Zhang P, Lu Y, He S, Zhang Y, Jia N (2021) A dual-signal electrochemiluminescence immunosensor based on Ru(bpy)
doi: 10.1016/j.talanta.2020.121644
pubmed: 33076164
Xue J, Yang L, Wang H, Yan T, Fan D, Feng R, Du B, Wei Q, Ju H (2019) Quench-type electrochemiluminescence immunosensor for detection of amyloid beta-protein based on resonance energy transfer from luminol@SnS
doi: 10.1016/j.bios.2019.03.035
pubmed: 30928738
Recum P, Hirsch T (2024) Graphene-based chemiresistive gas sensors. Nanoscale Adv 6(1):11–31. https://doi.org/10.1039/d3na00423f
doi: 10.1039/d3na00423f
Kumar S, Twinkle, Kaur M (2021) Carbon nanotube-derived highly conductive graphene nanoribbons for electronic applications. Mater Chem Phys 259:123967. https://doi.org/10.1016/j.matchemphys.2020.123967
doi: 10.1016/j.matchemphys.2020.123967
Lai CQ, Markandan K, Luo B, Lam YC, Chung WC, Chidambaram A (2021) Viscoelastic and high strain rate response of anisotropic graphene-polymer nanocomposites fabricated with stereolithographic 3D printing. Addit Manuf 37:101721. https://doi.org/10.1016/j.addma.2020.101721
doi: 10.1016/j.addma.2020.101721
Wang K, Liu Q, Wu XY, Guan QM, Li HN (2010) Graphene enhanced electrochemiluminescence of CdS nanocrystal for H
doi: 10.1016/j.talanta.2010.04.054
pubmed: 20685480
Kuang K, Chen Y, Li Y, Ji Y, Jia N (2024) N-doped TiO
doi: 10.1016/j.bios.2023.115914
pubmed: 38091899
Masoudipour N, Sadeghi M, Mohammadi-Moghadam F (2018) Photo-catalytic inactivation of E. coli using stabilized Ag/S, N-TiO2 nanoparticles by fixed bed photo-reactor under visible light and sunlight. Desalination Water Treat 110:109–116. https://doi.org/10.5004/dwt.2018.22224
doi: 10.5004/dwt.2018.22224
Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, Wang L, Liu H, Liu Y, Ruan R (2020) Photocatalytic degradation of organic pollutants using TiO
doi: 10.1016/j.jclepro.2020.121725
Mahy JG, Tilkin RG, Douven S, Lambert SD (2019) TiO
doi: 10.1016/j.surfin.2019.100366
Li P, Yu J, Zhao K, Deng A, Li J (2020) Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol. Biosens Bioelectron 147:111790. https://doi.org/10.1016/j.bios.2019.111790
doi: 10.1016/j.bios.2019.111790
pubmed: 31669805
Zou C, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141. https://doi.org/10.1016/j.jcis.2016.10.088
doi: 10.1016/j.jcis.2016.10.088
pubmed: 27821334
Bai J, Zhao Y, Wang Z, Liu C, Wang Y, Li Z (2013) Dual-readout fluorescent assay of protein kinase activity by use of TiO
doi: 10.1021/ac400799w
pubmed: 23581884
Liu C, Chang L, Wang H, Bai J, Ren W, Li Z (2014) Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity. Anal Chem 86(12):6095–6102. https://doi.org/10.1021/ac501247t
doi: 10.1021/ac501247t
pubmed: 24871878
Pollok-Kopp B, Huttenrauch F, Rethorn S, Oppermann M (2006) Dynamics of protein kinase C-mediated phosphorylation of the complement C5a receptor on serine 334
doi: 10.1074/jbc.M601317200
pubmed: 17145764
Xiao K, Meng L, Du C, Zhang Q, Yu Q, Zhang X, Chen J (2021) A label-free photoelectrochemical biosensor with near-zero-background noise for protein kinase A activity assay based on porous ZrO
doi: 10.1016/j.snb.2020.129096
Xie Y, Zhang M, Bin Q, Xie S, Guo L, Cheng F, Lv W (2020) Photoelectrochemical immunosensor based on CdSe@BiVO
doi: 10.1016/j.bios.2019.111949
Luo M, Liu Y, Hu J, Liu H, Li J (2012) One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Appl Mater Interfaces 4(3):1813–1821. https://doi.org/10.1021/am3000903
doi: 10.1021/am3000903
pubmed: 22387732
Lei YM, Zhou J, Chai YQ, Zhuo Y, Yuan R (2018) SnS
doi: 10.1021/acs.analchem.8b03623
pubmed: 30226050
Chansri P, Sung Y-M (2016) Fabrication of carbon nanotubes/TiO
doi: 10.1016/j.surfcoat.2016.07.011
Liu J, Cheng H, He D, He X, Wang K, Liu Q, Zhao S, Yang X (2017) Label-free homogeneous electrochemical sensing platform for protein kinase assay based on carboxypeptidase Y-assisted peptide cleavage and vertically ordered mesoporous silica films. Anal Chem 89(17):9062–9068. https://doi.org/10.1021/acs.analchem.7b01739
doi: 10.1021/acs.analchem.7b01739
pubmed: 28786659
Lee CS, Oh DE, Kim TH (2020) Label-free assay of protein kinase A activity and inhibition in cancer cell using electrochemically-prepared AuNP/rGO nanohybrid electrode modified with C-Kemptide. Talanta 215:120899. https://doi.org/10.1016/j.talanta.2020.120899
doi: 10.1016/j.talanta.2020.120899
pubmed: 32312444
Li X, Zhu L, Zhou Y, Yin H, Ai S (2017) Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO
doi: 10.1021/acs.analchem.6b04184
pubmed: 28219249
Jia C, Bai J, Liu Z, Gao S, Han Y, Yan H (2020) Application of a titanium-based metal-organic framework to protein kinase activity detection and inhibitor screening. Anal Chim Acta 1128:99–106. https://doi.org/10.1016/j.aca.2020.06.065
doi: 10.1016/j.aca.2020.06.065
pubmed: 32825917
Bai J, Liu L, Jia C, Liu Z, Gao S, Han Y, Yan H (2019) Fluorescence method for the detection of protein kinase activity by using a zirconium-based metal–organic framework as an affinity probe. ACS Appl Bio Mater 2(12):6021–6028. https://doi.org/10.1021/acsabm.9b00978
doi: 10.1021/acsabm.9b00978
pubmed: 35021523
Sun Y, Zhang Y, Zhang H, Liu M, Liu Y (2020) Integrating highly efficient recognition and signal transition of g-C
doi: 10.1021/acs.analchem.0c01776
pubmed: 32600031
Liang RP, Xiang CY, Zhao HF, Qiu JD (2014) Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using a multifunctional nanoprobe. Anal Chim Acta 812:33–40. https://doi.org/10.1016/j.aca.2013.12.037
doi: 10.1016/j.aca.2013.12.037
pubmed: 24491761