Intragenic DNA inversions expand bacterial coding capacity.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
25 Sep 2024
25 Sep 2024
Historique:
received:
05
09
2023
accepted:
20
08
2024
medline:
26
9
2024
pubmed:
26
9
2024
entrez:
25
9
2024
Statut:
aheadofprint
Résumé
Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes
Identifiants
pubmed: 39322669
doi: 10.1038/s41586-024-07970-4
pii: 10.1038/s41586-024-07970-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
van der Woude, M. W. & Bäumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).
pubmed: 15258095
pmcid: 452554
doi: 10.1128/CMR.17.3.581-611.2004
Trzilova, D. & Tamayo, R. Site-specific recombination—how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).
pubmed: 33008627
doi: 10.1016/j.tig.2020.09.004
Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).
pubmed: 322276
doi: 10.1126/science.322276
Stocker, B. A. Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. J. Hyg. 47, 398–413 (1949).
pubmed: 20475789
pmcid: 2234939
Meydan, S., Vázquez-Laslop, N. & Mankin, A. S. Genes within genes in bacterial genomes. Microbiol. Spectr. 6, rwr-0020-2018 (2018).
doi: 10.1128/microbiolspec.RWR-0020-2018
Zhong, A. et al. Toxic antiphage defense proteins inhibited by intragenic antitoxin proteins. Proc. Natl Acad. Sci. USA 120, e2307382120 (2023).
pubmed: 37487082
pmcid: 10400941
doi: 10.1073/pnas.2307382120
Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).
pubmed: 17094739
doi: 10.1146/annurev.genet.40.110405.090442
Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259.e14 (2019).
pubmed: 31402174
pmcid: 6764417
doi: 10.1016/j.cell.2019.07.016
Schlub, T. E. & Holmes, E. C. Properties and abundance of overlapping genes in viruses. Virus Evol. 6, veaa009 (2020).
pubmed: 32071766
pmcid: 7017920
doi: 10.1093/ve/veaa009
Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).
pubmed: 17703991
pmcid: 2703298
doi: 10.1016/j.mib.2007.06.004
Andrewes, F. W. Studies in group-agglutination I. The Salmonella group and its antigenic structure. J. Pathol. Bacteriol. 25, 505–521 (1922).
doi: 10.1002/path.1700250411
Goldberg, A., Fridman, O., Ronin, I. & Balaban, N. Q. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med. 6, 112 (2014).
pubmed: 25530806
pmcid: 4272514
doi: 10.1186/s13073-014-0112-4
Sekulovic, O. et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 14, e1007332 (2018).
pubmed: 29621238
pmcid: 5903667
doi: 10.1371/journal.pgen.1007332
Jiang, X. et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 363, 181–187 (2019).
pubmed: 30630933
pmcid: 6543533
doi: 10.1126/science.aau5238
Milman, O., Yelin, I. & Kishony, R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res. 51, 553–573 (2023).
pubmed: 36617974
pmcid: 9881135
doi: 10.1093/nar/gkac1166
Komano, T. Shufflons: multiple inversion systems and integrons. Annu. Rev. Genet. 33, 171–191 (1999).
pubmed: 10690407
doi: 10.1146/annurev.genet.33.1.171
Atack, J. M., Guo, C., Yang, L., Zhou, Y. & Jennings, M. P. DNA sequence repeats identify numerous type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J. 34, 1038–1051 (2020).
pubmed: 31914596
doi: 10.1096/fj.201901536RR
Chatzidaki-Livanis, M., Coyne, M. J., Roche-Hakansson, H. & Comstock, L. E. Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J. Bacteriol. 190, 1020–1026 (2008).
pubmed: 18039760
doi: 10.1128/JB.01519-07
Taketani, M., Donia, M. S., Jacobson, A. N., Lambris, J. D. & Fischbach, M. A. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. mBio 6, e01339-15 (2015).
pubmed: 26419879
pmcid: 4611039
doi: 10.1128/mBio.01339-15
Troy, E. B., Carey, V. J., Kasper, D. L. & Comstock, L. E. Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection. J. Bacteriol. 192, 5832–5836 (2010).
pubmed: 20729352
pmcid: 2953686
doi: 10.1128/JB.00555-10
Severyn, C. J. et al. Microbiota dynamics in a randomized trial of gut decontamination during allogeneic hematopoietic cell transplantation. JCI Insight 7, e154344 (2022).
pubmed: 35239511
pmcid: 9057614
doi: 10.1172/jci.insight.154344
Siranosian, B. A. et al. Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults. Nat. Commun. 13, 586 (2022).
pubmed: 35102136
pmcid: 8803835
doi: 10.1038/s41467-022-28048-7
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).
pubmed: 18996345
pmcid: 2605320
doi: 10.1016/j.chom.2008.09.007
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).
pubmed: 19403529
pmcid: 2709373
doi: 10.1074/jbc.M109.008094
Krinos, C. M. et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001).
pubmed: 11734857
doi: 10.1038/35107092
Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).
pubmed: 32601452
pmcid: 7482406
doi: 10.1038/s41564-020-0746-5
Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).
pubmed: 21512004
pmcid: 3164325
doi: 10.1126/science.1206095
Neff, C. P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).
pubmed: 27693306
pmcid: 5113727
doi: 10.1016/j.chom.2016.09.002
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).
pubmed: 16009137
doi: 10.1016/j.cell.2005.05.007
Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A Subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).
pubmed: 28966055
pmcid: 5830307
doi: 10.1016/j.chom.2017.08.020
Musumeci, O. et al. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am. J. Hum. Genet. 66, 1900–1904 (2000).
pubmed: 10775530
pmcid: 1378040
doi: 10.1086/302927
Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).
pubmed: 34018328
pmcid: 8138268
doi: 10.15252/msb.20209880
West, P. T., Chanin, R. B. & Bhatt, A. S. From genome structure to function: insights into structural variation in microbiology. Curr. Opin. Microbiol. 69, 102192 (2022).
pubmed: 36030622
pmcid: 9783807
doi: 10.1016/j.mib.2022.102192
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).
pubmed: 37156916
doi: 10.1038/s41587-023-01773-0
Casino, P., Rubio, V. & Marina, A. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771 (2010).
pubmed: 20951027
doi: 10.1016/j.sbi.2010.09.010
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A. & Wilson, G. G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 42, 20–44 (2014).
pubmed: 24068554
doi: 10.1093/nar/gkt847
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).
doi: 10.1093/femsre/fux025
Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).
pubmed: 35676264
pmcid: 9177567
doi: 10.1038/s41467-022-30857-9
Maghini, D. G. et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat. Biotechnol. 42, 328–338 (2024).
Rodionov, D. A. et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 10, 1316 (2019).
pubmed: 31275260
pmcid: 6593275
doi: 10.3389/fmicb.2019.01316
Sharma, V. et al. B-vitamin sharing promotes stability of gut microbial communities. Front. Microbiol. 10, 1485 (2019).
pubmed: 31333610
pmcid: 6615432
doi: 10.3389/fmicb.2019.01485
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
pubmed: 22699611
pmcid: 3376388
doi: 10.1038/nature11053
Costliow, Z. A. & Degnan, P. H. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. mSystems 2, e00116–17 (2017).
pubmed: 28951891
pmcid: 5613172
doi: 10.1128/mSystems.00116-17
Martinez-Gomez, N. C. & Downs, D. M. ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. Biochemistry 47, 9054–9056 (2008).
pubmed: 18686975
doi: 10.1021/bi8010253
Said, H. M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 437, 357–372 (2011).
pubmed: 21749321
doi: 10.1042/BJ20110326
D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).
pubmed: 24910088
doi: 10.1111/evo.12468
Jurgenson, C. T., Ealick, S. E. & Begley, T. P. Biosynthesis of thiamin pyrophosphate. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.7 (2009).
Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. Comparative genomics of thiamin biosynthesis in prokaryotes. J. Biol. Chem. 277, 48949–48959 (2002).
pubmed: 12376536
doi: 10.1074/jbc.M208965200
Bacic, M. K. & Smith, C. J. Laboratory maintenance and cultivation of bacteroides species. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc13c01s9 (2008).
Zhu, W. et al. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388.e8 (2020).
pubmed: 32075741
pmcid: 7439322
doi: 10.1016/j.chom.2020.01.010
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456
doi: 10.1016/S0168-9525(00)02024-2
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Yang, C., Chu, J., Warren, R. L. & Birol, I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience 6, gix010 (2017).
doi: 10.1093/gigascience/gix010
Ono, Y., Asai, K. & Hamada, M. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics 37, 589–595 (2021).
pubmed: 32976553
doi: 10.1093/bioinformatics/btaa835
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).
pubmed: 28742071
pmcid: 5702732
doi: 10.1038/ismej.2017.126
De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).
pubmed: 29547981
pmcid: 6061794
doi: 10.1093/bioinformatics/bty149
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
pubmed: 37774136
pmcid: 10588335
doi: 10.1002/pro.4792
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 24451626
pmcid: 3998142
doi: 10.1093/bioinformatics/btu031
Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).
pubmed: 31742321
doi: 10.1093/bioinformatics/btz859
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
pubmed: 22039361
pmcid: 3197634
doi: 10.1371/journal.pcbi.1002195
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
pubmed: 36350672
doi: 10.1093/nar/gkac993
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
pubmed: 32559359
doi: 10.1002/cpbi.102
Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl Acad. Sci. USA 113, E8396–E8405 (2016).
pubmed: 27956617
pmcid: 5206522
doi: 10.1073/pnas.1604560113
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
pubmed: 20211023
pmcid: 2848648
doi: 10.1186/1471-2105-11-119
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
pubmed: 31779668
pmcid: 6883579
doi: 10.1186/s13059-019-1891-0
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
pubmed: 16731699
doi: 10.1093/bioinformatics/btl158
Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteomics 21, 100279 (2022).
pubmed: 35944843
pmcid: 9465115
doi: 10.1016/j.mcpro.2022.100279
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336
pmcid: 5409104
doi: 10.1038/nmeth.4256
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
pubmed: 31768060
doi: 10.1038/s41592-019-0638-x
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
pubmed: 20147306
pmcid: 2844992
doi: 10.1093/bioinformatics/btq054
Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).
pubmed: 28691345
doi: 10.1002/mas.21540
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038