Intragenic DNA inversions expand bacterial coding capacity.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
25 Sep 2024
Historique:
received: 05 09 2023
accepted: 20 08 2024
medline: 26 9 2024
pubmed: 26 9 2024
entrez: 25 9 2024
Statut: aheadofprint

Résumé

Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes

Identifiants

pubmed: 39322669
doi: 10.1038/s41586-024-07970-4
pii: 10.1038/s41586-024-07970-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

van der Woude, M. W. & Bäumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).
pubmed: 15258095 pmcid: 452554 doi: 10.1128/CMR.17.3.581-611.2004
Trzilova, D. & Tamayo, R. Site-specific recombination—how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).
pubmed: 33008627 doi: 10.1016/j.tig.2020.09.004
Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).
pubmed: 322276 doi: 10.1126/science.322276
Stocker, B. A. Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. J. Hyg. 47, 398–413 (1949).
pubmed: 20475789 pmcid: 2234939
Meydan, S., Vázquez-Laslop, N. & Mankin, A. S. Genes within genes in bacterial genomes. Microbiol. Spectr. 6, rwr-0020-2018 (2018).
doi: 10.1128/microbiolspec.RWR-0020-2018
Zhong, A. et al. Toxic antiphage defense proteins inhibited by intragenic antitoxin proteins. Proc. Natl Acad. Sci. USA 120, e2307382120 (2023).
pubmed: 37487082 pmcid: 10400941 doi: 10.1073/pnas.2307382120
Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).
pubmed: 17094739 doi: 10.1146/annurev.genet.40.110405.090442
Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259.e14 (2019).
pubmed: 31402174 pmcid: 6764417 doi: 10.1016/j.cell.2019.07.016
Schlub, T. E. & Holmes, E. C. Properties and abundance of overlapping genes in viruses. Virus Evol. 6, veaa009 (2020).
pubmed: 32071766 pmcid: 7017920 doi: 10.1093/ve/veaa009
Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).
pubmed: 17703991 pmcid: 2703298 doi: 10.1016/j.mib.2007.06.004
Andrewes, F. W. Studies in group-agglutination I. The Salmonella group and its antigenic structure. J. Pathol. Bacteriol. 25, 505–521 (1922).
doi: 10.1002/path.1700250411
Goldberg, A., Fridman, O., Ronin, I. & Balaban, N. Q. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med. 6, 112 (2014).
pubmed: 25530806 pmcid: 4272514 doi: 10.1186/s13073-014-0112-4
Sekulovic, O. et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 14, e1007332 (2018).
pubmed: 29621238 pmcid: 5903667 doi: 10.1371/journal.pgen.1007332
Jiang, X. et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 363, 181–187 (2019).
pubmed: 30630933 pmcid: 6543533 doi: 10.1126/science.aau5238
Milman, O., Yelin, I. & Kishony, R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res. 51, 553–573 (2023).
pubmed: 36617974 pmcid: 9881135 doi: 10.1093/nar/gkac1166
Komano, T. Shufflons: multiple inversion systems and integrons. Annu. Rev. Genet. 33, 171–191 (1999).
pubmed: 10690407 doi: 10.1146/annurev.genet.33.1.171
Atack, J. M., Guo, C., Yang, L., Zhou, Y. & Jennings, M. P. DNA sequence repeats identify numerous type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J. 34, 1038–1051 (2020).
pubmed: 31914596 doi: 10.1096/fj.201901536RR
Chatzidaki-Livanis, M., Coyne, M. J., Roche-Hakansson, H. & Comstock, L. E. Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J. Bacteriol. 190, 1020–1026 (2008).
pubmed: 18039760 doi: 10.1128/JB.01519-07
Taketani, M., Donia, M. S., Jacobson, A. N., Lambris, J. D. & Fischbach, M. A. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. mBio 6, e01339-15 (2015).
pubmed: 26419879 pmcid: 4611039 doi: 10.1128/mBio.01339-15
Troy, E. B., Carey, V. J., Kasper, D. L. & Comstock, L. E. Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection. J. Bacteriol. 192, 5832–5836 (2010).
pubmed: 20729352 pmcid: 2953686 doi: 10.1128/JB.00555-10
Severyn, C. J. et al. Microbiota dynamics in a randomized trial of gut decontamination during allogeneic hematopoietic cell transplantation. JCI Insight 7, e154344 (2022).
pubmed: 35239511 pmcid: 9057614 doi: 10.1172/jci.insight.154344
Siranosian, B. A. et al. Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults. Nat. Commun. 13, 586 (2022).
pubmed: 35102136 pmcid: 8803835 doi: 10.1038/s41467-022-28048-7
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).
pubmed: 18996345 pmcid: 2605320 doi: 10.1016/j.chom.2008.09.007
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284, 18445–18457 (2009).
pubmed: 19403529 pmcid: 2709373 doi: 10.1074/jbc.M109.008094
Krinos, C. M. et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001).
pubmed: 11734857 doi: 10.1038/35107092
Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).
pubmed: 32601452 pmcid: 7482406 doi: 10.1038/s41564-020-0746-5
Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).
pubmed: 21512004 pmcid: 3164325 doi: 10.1126/science.1206095
Neff, C. P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).
pubmed: 27693306 pmcid: 5113727 doi: 10.1016/j.chom.2016.09.002
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).
pubmed: 16009137 doi: 10.1016/j.cell.2005.05.007
Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A Subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).
pubmed: 28966055 pmcid: 5830307 doi: 10.1016/j.chom.2017.08.020
Musumeci, O. et al. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am. J. Hum. Genet. 66, 1900–1904 (2000).
pubmed: 10775530 pmcid: 1378040 doi: 10.1086/302927
Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).
pubmed: 34018328 pmcid: 8138268 doi: 10.15252/msb.20209880
West, P. T., Chanin, R. B. & Bhatt, A. S. From genome structure to function: insights into structural variation in microbiology. Curr. Opin. Microbiol. 69, 102192 (2022).
pubmed: 36030622 pmcid: 9783807 doi: 10.1016/j.mib.2022.102192
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).
pubmed: 37156916 doi: 10.1038/s41587-023-01773-0
Casino, P., Rubio, V. & Marina, A. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771 (2010).
pubmed: 20951027 doi: 10.1016/j.sbi.2010.09.010
Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A. & Wilson, G. G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 42, 20–44 (2014).
pubmed: 24068554 doi: 10.1093/nar/gkt847
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).
doi: 10.1093/femsre/fux025
Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).
pubmed: 35676264 pmcid: 9177567 doi: 10.1038/s41467-022-30857-9
Maghini, D. G. et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat. Biotechnol. 42, 328–338 (2024).
Rodionov, D. A. et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 10, 1316 (2019).
pubmed: 31275260 pmcid: 6593275 doi: 10.3389/fmicb.2019.01316
Sharma, V. et al. B-vitamin sharing promotes stability of gut microbial communities. Front. Microbiol. 10, 1485 (2019).
pubmed: 31333610 pmcid: 6615432 doi: 10.3389/fmicb.2019.01485
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
pubmed: 22699611 pmcid: 3376388 doi: 10.1038/nature11053
Costliow, Z. A. & Degnan, P. H. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. mSystems 2, e00116–17 (2017).
pubmed: 28951891 pmcid: 5613172 doi: 10.1128/mSystems.00116-17
Martinez-Gomez, N. C. & Downs, D. M. ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. Biochemistry 47, 9054–9056 (2008).
pubmed: 18686975 doi: 10.1021/bi8010253
Said, H. M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 437, 357–372 (2011).
pubmed: 21749321 doi: 10.1042/BJ20110326
D’Souza, G. et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).
pubmed: 24910088 doi: 10.1111/evo.12468
Jurgenson, C. T., Ealick, S. E. & Begley, T. P. Biosynthesis of thiamin pyrophosphate. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.7 (2009).
Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. Comparative genomics of thiamin biosynthesis in prokaryotes. J. Biol. Chem. 277, 48949–48959 (2002).
pubmed: 12376536 doi: 10.1074/jbc.M208965200
Bacic, M. K. & Smith, C. J. Laboratory maintenance and cultivation of bacteroides species. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc13c01s9 (2008).
Zhu, W. et al. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388.e8 (2020).
pubmed: 32075741 pmcid: 7439322 doi: 10.1016/j.chom.2020.01.010
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456 doi: 10.1016/S0168-9525(00)02024-2
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Yang, C., Chu, J., Warren, R. L. & Birol, I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience 6, gix010 (2017).
doi: 10.1093/gigascience/gix010
Ono, Y., Asai, K. & Hamada, M. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics 37, 589–595 (2021).
pubmed: 32976553 doi: 10.1093/bioinformatics/btaa835
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).
pubmed: 28742071 pmcid: 5702732 doi: 10.1038/ismej.2017.126
De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).
pubmed: 29547981 pmcid: 6061794 doi: 10.1093/bioinformatics/bty149
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
pubmed: 37774136 pmcid: 10588335 doi: 10.1002/pro.4792
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
pubmed: 24451626 pmcid: 3998142 doi: 10.1093/bioinformatics/btu031
Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).
pubmed: 31742321 doi: 10.1093/bioinformatics/btz859
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
pubmed: 22039361 pmcid: 3197634 doi: 10.1371/journal.pcbi.1002195
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
pubmed: 36350672 doi: 10.1093/nar/gkac993
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
pubmed: 32559359 doi: 10.1002/cpbi.102
Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl Acad. Sci. USA 113, E8396–E8405 (2016).
pubmed: 27956617 pmcid: 5206522 doi: 10.1073/pnas.1604560113
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
pubmed: 20211023 pmcid: 2848648 doi: 10.1186/1471-2105-11-119
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
pubmed: 31779668 pmcid: 6883579 doi: 10.1186/s13059-019-1891-0
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
pubmed: 16731699 doi: 10.1093/bioinformatics/btl158
Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteomics 21, 100279 (2022).
pubmed: 35944843 pmcid: 9465115 doi: 10.1016/j.mcpro.2022.100279
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336 pmcid: 5409104 doi: 10.1038/nmeth.4256
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
pubmed: 31768060 doi: 10.1038/s41592-019-0638-x
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
pubmed: 20147306 pmcid: 2844992 doi: 10.1093/bioinformatics/btq054
Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).
pubmed: 28691345 doi: 10.1002/mas.21540
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Rachael B Chanin (RB)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Patrick T West (PT)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Jakob Wirbel (J)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Matthew O Gill (MO)

Department of Genetics, Stanford University, Stanford, CA, USA.

Gabriella Z M Green (GZM)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Ryan M Park (RM)

Department of Genetics, Stanford University, Stanford, CA, USA.

Nora Enright (N)

Department of Bioengineering, Stanford University, Stanford, CA, USA.

Arjun M Miklos (AM)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Angela S Hickey (AS)

Department of Genetics, Stanford University, Stanford, CA, USA.

Erin F Brooks (EF)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.

Krystal K Lum (KK)

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Ileana M Cristea (IM)

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Ami S Bhatt (AS)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA. asbhatt@stanford.edu.
Department of Genetics, Stanford University, Stanford, CA, USA. asbhatt@stanford.edu.

Classifications MeSH