Structural basis of archaeal FttA-dependent transcription termination.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
25 Sep 2024
Historique:
received: 09 08 2023
accepted: 21 08 2024
medline: 26 9 2024
pubmed: 26 9 2024
entrez: 25 9 2024
Statut: aheadofprint

Résumé

The ribonuclease FttA (also known as aCPSF and aCPSF1) mediates factor-dependent transcription termination in archaea

Identifiants

pubmed: 39322680
doi: 10.1038/s41586-024-07979-9
pii: 10.1038/s41586-024-07979-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Sanders, T. et al. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat. Microbiol. 5, 545–553 (2020).
pubmed: 32094586 pmcid: 7103508 doi: 10.1038/s41564-020-0667-3
Yue, L. et al. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3′-end cleavage mode. Nucleic Acids Res. 48, 9589–9605 (2020).
pubmed: 32857850 pmcid: 7515710 doi: 10.1093/nar/gkaa702
Li, J. et al. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 10, e70464 (2021).
pubmed: 34964713 pmcid: 8716108 doi: 10.7554/eLife.70464
Phung, D. et al. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res. 41, 1091–1103 (2013).
pubmed: 23222134 doi: 10.1093/nar/gks1237
Nishida, Y. et al. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 78, 2395–2398 (2010).
pubmed: 20544974 doi: 10.1002/prot.22748
Mir-Montazeri, B., Ammelburg, M., Forouzan, D., Lupas, A. & Hartmann, M. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 173, 191–195 (2011).
pubmed: 20851187 doi: 10.1016/j.jsb.2010.09.013
Silva, A. et al. Structure and activity of a novel archaeal beta-CASP protein with N-terminal KH domains. Structure 19, 622–632 (2011).
pubmed: 21565697 pmcid: 3095777 doi: 10.1016/j.str.2011.03.002
Fianu, I. et al. Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887 (2021).
pubmed: 34762484 doi: 10.1126/science.abk0154
Zheng, H. et al. Structural basis of INTAC-regulated transcription. Protein Cell 14, 698–702 (2023).
pubmed: 36869814 pmcid: 10501182 doi: 10.1093/procel/pwad010
Fianu, I. et al. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 629, 219–227 (2024).
pubmed: 38570683 pmcid: 11062913 doi: 10.1038/s41586-024-07269-4
Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell 81, 514–529 (2021).
pubmed: 33385327 doi: 10.1016/j.molcel.2020.12.014
Wagner, E., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).
pubmed: 36634676 pmcid: 10866050 doi: 10.1016/j.molcel.2022.11.012
Sun, Y., Hamilton, K. & Tong, L. Recent molecular insights into canonical pre-mRNA 3′-end processing. Transcription 11, 83–96 (2020).
pubmed: 32522085 pmcid: 7549739 doi: 10.1080/21541264.2020.1777047
Eaton, J. & West, S. Termination of transcription by RNA polymerase II. Trends Genet. 36, 664–675 (2020).
pubmed: 32527618 doi: 10.1016/j.tig.2020.05.008
Rodriguez-Molina, J., West, S. & Passmore, L. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII. Mol. Cell 83, 404–415 (2023).
pubmed: 36634677 pmcid: 7614299 doi: 10.1016/j.molcel.2022.12.021
Boreikaite, V. & Passmore, L. 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression. Ann. Rev. Biochem. 92, 199–225 (2023).
pubmed: 37001138 doi: 10.1146/annurev-biochem-052521-012445
Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).
pubmed: 22306403 pmcid: 3382729 doi: 10.1016/j.jmb.2012.01.031
Tomar, S. & Artsimovitch, I. NusG–Spt5 proteins-universal tools for transcription modification and communication. Chem. Rev. 113, 8604–8619 (2013).
pubmed: 23638618 pmcid: 4259564 doi: 10.1021/cr400064k
Song, A. & Chen, F. The pleiotropic roles of SPT5 in transcription. Transcription 13, 53–69 (2022).
pubmed: 35876486 pmcid: 9467590 doi: 10.1080/21541264.2022.2103366
Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367–374 (2023).
pubmed: 36697824 pmcid: 9911385 doi: 10.1038/s41586-022-05658-1
Kang, J. et al. Structural basis for transcript elongation control by NusG family universal regulators. Cell 173, 1650–1662 (2018).
pubmed: 29887376 pmcid: 6003885 doi: 10.1016/j.cell.2018.05.017
Delbeau, M. et al. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol. Cell 83, 1474–1488 (2023).
pubmed: 37116494 pmcid: 10231689 doi: 10.1016/j.molcel.2023.04.007
Vishwakarma, R., Qayyum, M., Babitzke, P. & Murakami, K. Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase. Proc. Natl Acad. Sci. USA 120, e2218516120 (2023).
pubmed: 36745813 pmcid: 9963633 doi: 10.1073/pnas.2218516120
Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924 (2017).
pubmed: 28775211 doi: 10.1126/science.aan8552
Wang, C. et al. Structural basis of transcription–translation coupling. Science 369, 1359–1365 (2020).
pubmed: 32820061 pmcid: 7566311 doi: 10.1126/science.abb5317
Molodtsov, V. et al. Structural basis of RfaH-mediated transcription–translation coupling. Nature Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01372-w (2024).
Sun, Y. et al. Structure of an active human histone pre-mRNA 3′-end processing machinery. Science 367, 700–703 (2020).
pubmed: 32029631 pmcid: 7008720 doi: 10.1126/science.aaz7758
Whitelaw, E. & Proudfoot, N. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene. EMBO J. 5, 2915–2922 (1986).
pubmed: 3024968 pmcid: 1167242 doi: 10.1002/j.1460-2075.1986.tb04587.x
Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).
pubmed: 15565157 doi: 10.1038/nature03041
West, S., Gromak, N. & Proudfoot, N. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).
pubmed: 15565158 doi: 10.1038/nature03035
Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911–914 (2004).
pubmed: 15620350 doi: 10.1016/j.cell.2004.11.041
Tollervey, D. Termination by torpedo. Nature 432, 456–457 (2004).
pubmed: 15565140 doi: 10.1038/432456a
Baejen, C. et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell 66, 38–49.e6 (2017).
pubmed: 28318822 doi: 10.1016/j.molcel.2017.02.009
Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).
pubmed: 26474067 pmcid: 4654110 doi: 10.1016/j.molcel.2015.09.026
Eaton, J. et al. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).
pubmed: 29432121 pmcid: 5830926 doi: 10.1101/gad.308528.117
Cortazar, M. et al. Xrn2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev. 36, 1062–1078 (2022).
pubmed: 36396340 pmcid: 9744234 doi: 10.1101/gad.350004.122
Zeng, Y., Zhang, H. W., Wu, X. X. & Zhang, Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).
pubmed: 38538796 doi: 10.1038/s41586-024-07240-3
Yanagisawa, T. et al. Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex. Preprint at bioRxiv https://doi.org/10.1101/2024.03.28.587100 (2024).
Larson, M., Greenleaf, W., Landick, R. & Block, S. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132, 971–982 (2008).
pubmed: 18358810 pmcid: 2295211 doi: 10.1016/j.cell.2008.01.027
Santangelo, T. & Roberts, J. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14, 117–126 (2004).
pubmed: 15068808 doi: 10.1016/S1097-2765(04)00154-6
Park, J. & Roberts, J. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).
pubmed: 16551743 pmcid: 1405909 doi: 10.1073/pnas.0600145103
Ray-Soni, A., Bellecourt, M. & Landick, R. Mechanisms of bacterial transcription termination. Annu. Rev. Biochem. 85, 319–347 (2016).
pubmed: 27023849 doi: 10.1146/annurev-biochem-060815-014844
Roberts, J. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).
pubmed: 30978344 doi: 10.1016/j.jmb.2019.04.003
Epshtein, V., Cardinale, C., Ruckenstein, A., Borukhov, S. & Nudler, E. An allosteric path to transcription termination. Mol. Cell 28, 991–1001 (2007).
pubmed: 18158897 doi: 10.1016/j.molcel.2007.10.011
Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).
pubmed: 20075920 pmcid: 2929367 doi: 10.1038/nature08669
Webster, M. et al. Structural basis of transcription–translation coupling and collision in bacteria. Science 369, 1355–1359 (2020).
pubmed: 32820062 doi: 10.1126/science.abb5036
Blaha, G. & Wade, J. Transcription–translation coupling in bacteria. Annu. Rev. Genet. 56, 9.1–9.19 (2022).
doi: 10.1146/annurev-genet-072220-033342
French, S., Santangelo, T., Beyer, A. & Reeve, J. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).
pubmed: 17237472 doi: 10.1093/molbev/msm007
Weixlbaumer, A., Grunberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).
pubmed: 33995325 pmcid: 8116511 doi: 10.3389/fmicb.2021.661827
Grana, D., Gardella, T. & Susskind, M. The effects of mutations in the ant promoter of phage P22 depend on context. Genet. 120, 319–327 (1988).
doi: 10.1093/genetics/120.2.319
Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, 1989).
Punjani, A., Rubinstein, J., Fleet, D. & Brubaker, M. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. et al. UCSF chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Jun, S.-H. et al. Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat. Commun. 11, 6123 (2020).
pubmed: 33257704 pmcid: 7704642 doi: 10.1038/s41467-020-19998-x
Klein, B. J. et al. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl Acad. Sci. USA 108, 46–550 (2011).
doi: 10.1073/pnas.1013828108
Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Afonine, T., Headd, J., Terwilliger, T. & Adams, P. Computational Crystallography Newsletter 4, 43–44; https://phenix-online.org/phenixwebsite_static/mainsite/files/newsletter/CCN_2013_07.pdf (2013).
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
pubmed: 15890530 doi: 10.1016/j.jsb.2005.03.010

Auteurs

Linlin You (L)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.

Chengyuan Wang (C)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

Vadim Molodtsov (V)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
Research Institute of Molecular and Cellular Medicine RUDN, Moscow, Russia.

Konstantin Kuznedelov (K)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.

Xinyi Miao (X)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.

Breanna R Wenck (BR)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

Paul Ulisse (P)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

Travis J Sanders (TJ)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

Craig J Marshall (CJ)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

Emre Firlar (E)

Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA.

Jason T Kaelber (JT)

Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA.

Thomas J Santangelo (TJ)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.

Richard H Ebright (RH)

Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA. ebright@waksman.rutgers.edu.

Classifications MeSH