Structural basis of archaeal FttA-dependent transcription termination.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
25 Sep 2024
25 Sep 2024
Historique:
received:
09
08
2023
accepted:
21
08
2024
medline:
26
9
2024
pubmed:
26
9
2024
entrez:
25
9
2024
Statut:
aheadofprint
Résumé
The ribonuclease FttA (also known as aCPSF and aCPSF1) mediates factor-dependent transcription termination in archaea
Identifiants
pubmed: 39322680
doi: 10.1038/s41586-024-07979-9
pii: 10.1038/s41586-024-07979-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Sanders, T. et al. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat. Microbiol. 5, 545–553 (2020).
pubmed: 32094586
pmcid: 7103508
doi: 10.1038/s41564-020-0667-3
Yue, L. et al. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3′-end cleavage mode. Nucleic Acids Res. 48, 9589–9605 (2020).
pubmed: 32857850
pmcid: 7515710
doi: 10.1093/nar/gkaa702
Li, J. et al. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 10, e70464 (2021).
pubmed: 34964713
pmcid: 8716108
doi: 10.7554/eLife.70464
Phung, D. et al. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res. 41, 1091–1103 (2013).
pubmed: 23222134
doi: 10.1093/nar/gks1237
Nishida, Y. et al. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 78, 2395–2398 (2010).
pubmed: 20544974
doi: 10.1002/prot.22748
Mir-Montazeri, B., Ammelburg, M., Forouzan, D., Lupas, A. & Hartmann, M. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 173, 191–195 (2011).
pubmed: 20851187
doi: 10.1016/j.jsb.2010.09.013
Silva, A. et al. Structure and activity of a novel archaeal beta-CASP protein with N-terminal KH domains. Structure 19, 622–632 (2011).
pubmed: 21565697
pmcid: 3095777
doi: 10.1016/j.str.2011.03.002
Fianu, I. et al. Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887 (2021).
pubmed: 34762484
doi: 10.1126/science.abk0154
Zheng, H. et al. Structural basis of INTAC-regulated transcription. Protein Cell 14, 698–702 (2023).
pubmed: 36869814
pmcid: 10501182
doi: 10.1093/procel/pwad010
Fianu, I. et al. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 629, 219–227 (2024).
pubmed: 38570683
pmcid: 11062913
doi: 10.1038/s41586-024-07269-4
Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell 81, 514–529 (2021).
pubmed: 33385327
doi: 10.1016/j.molcel.2020.12.014
Wagner, E., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).
pubmed: 36634676
pmcid: 10866050
doi: 10.1016/j.molcel.2022.11.012
Sun, Y., Hamilton, K. & Tong, L. Recent molecular insights into canonical pre-mRNA 3′-end processing. Transcription 11, 83–96 (2020).
pubmed: 32522085
pmcid: 7549739
doi: 10.1080/21541264.2020.1777047
Eaton, J. & West, S. Termination of transcription by RNA polymerase II. Trends Genet. 36, 664–675 (2020).
pubmed: 32527618
doi: 10.1016/j.tig.2020.05.008
Rodriguez-Molina, J., West, S. & Passmore, L. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII. Mol. Cell 83, 404–415 (2023).
pubmed: 36634677
pmcid: 7614299
doi: 10.1016/j.molcel.2022.12.021
Boreikaite, V. & Passmore, L. 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression. Ann. Rev. Biochem. 92, 199–225 (2023).
pubmed: 37001138
doi: 10.1146/annurev-biochem-052521-012445
Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).
pubmed: 22306403
pmcid: 3382729
doi: 10.1016/j.jmb.2012.01.031
Tomar, S. & Artsimovitch, I. NusG–Spt5 proteins-universal tools for transcription modification and communication. Chem. Rev. 113, 8604–8619 (2013).
pubmed: 23638618
pmcid: 4259564
doi: 10.1021/cr400064k
Song, A. & Chen, F. The pleiotropic roles of SPT5 in transcription. Transcription 13, 53–69 (2022).
pubmed: 35876486
pmcid: 9467590
doi: 10.1080/21541264.2022.2103366
Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367–374 (2023).
pubmed: 36697824
pmcid: 9911385
doi: 10.1038/s41586-022-05658-1
Kang, J. et al. Structural basis for transcript elongation control by NusG family universal regulators. Cell 173, 1650–1662 (2018).
pubmed: 29887376
pmcid: 6003885
doi: 10.1016/j.cell.2018.05.017
Delbeau, M. et al. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol. Cell 83, 1474–1488 (2023).
pubmed: 37116494
pmcid: 10231689
doi: 10.1016/j.molcel.2023.04.007
Vishwakarma, R., Qayyum, M., Babitzke, P. & Murakami, K. Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase. Proc. Natl Acad. Sci. USA 120, e2218516120 (2023).
pubmed: 36745813
pmcid: 9963633
doi: 10.1073/pnas.2218516120
Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924 (2017).
pubmed: 28775211
doi: 10.1126/science.aan8552
Wang, C. et al. Structural basis of transcription–translation coupling. Science 369, 1359–1365 (2020).
pubmed: 32820061
pmcid: 7566311
doi: 10.1126/science.abb5317
Molodtsov, V. et al. Structural basis of RfaH-mediated transcription–translation coupling. Nature Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01372-w (2024).
Sun, Y. et al. Structure of an active human histone pre-mRNA 3′-end processing machinery. Science 367, 700–703 (2020).
pubmed: 32029631
pmcid: 7008720
doi: 10.1126/science.aaz7758
Whitelaw, E. & Proudfoot, N. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene. EMBO J. 5, 2915–2922 (1986).
pubmed: 3024968
pmcid: 1167242
doi: 10.1002/j.1460-2075.1986.tb04587.x
Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).
pubmed: 15565157
doi: 10.1038/nature03041
West, S., Gromak, N. & Proudfoot, N. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).
pubmed: 15565158
doi: 10.1038/nature03035
Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911–914 (2004).
pubmed: 15620350
doi: 10.1016/j.cell.2004.11.041
Tollervey, D. Termination by torpedo. Nature 432, 456–457 (2004).
pubmed: 15565140
doi: 10.1038/432456a
Baejen, C. et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell 66, 38–49.e6 (2017).
pubmed: 28318822
doi: 10.1016/j.molcel.2017.02.009
Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).
pubmed: 26474067
pmcid: 4654110
doi: 10.1016/j.molcel.2015.09.026
Eaton, J. et al. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).
pubmed: 29432121
pmcid: 5830926
doi: 10.1101/gad.308528.117
Cortazar, M. et al. Xrn2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev. 36, 1062–1078 (2022).
pubmed: 36396340
pmcid: 9744234
doi: 10.1101/gad.350004.122
Zeng, Y., Zhang, H. W., Wu, X. X. & Zhang, Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).
pubmed: 38538796
doi: 10.1038/s41586-024-07240-3
Yanagisawa, T. et al. Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex. Preprint at bioRxiv https://doi.org/10.1101/2024.03.28.587100 (2024).
Larson, M., Greenleaf, W., Landick, R. & Block, S. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132, 971–982 (2008).
pubmed: 18358810
pmcid: 2295211
doi: 10.1016/j.cell.2008.01.027
Santangelo, T. & Roberts, J. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14, 117–126 (2004).
pubmed: 15068808
doi: 10.1016/S1097-2765(04)00154-6
Park, J. & Roberts, J. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).
pubmed: 16551743
pmcid: 1405909
doi: 10.1073/pnas.0600145103
Ray-Soni, A., Bellecourt, M. & Landick, R. Mechanisms of bacterial transcription termination. Annu. Rev. Biochem. 85, 319–347 (2016).
pubmed: 27023849
doi: 10.1146/annurev-biochem-060815-014844
Roberts, J. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).
pubmed: 30978344
doi: 10.1016/j.jmb.2019.04.003
Epshtein, V., Cardinale, C., Ruckenstein, A., Borukhov, S. & Nudler, E. An allosteric path to transcription termination. Mol. Cell 28, 991–1001 (2007).
pubmed: 18158897
doi: 10.1016/j.molcel.2007.10.011
Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).
pubmed: 20075920
pmcid: 2929367
doi: 10.1038/nature08669
Webster, M. et al. Structural basis of transcription–translation coupling and collision in bacteria. Science 369, 1355–1359 (2020).
pubmed: 32820062
doi: 10.1126/science.abb5036
Blaha, G. & Wade, J. Transcription–translation coupling in bacteria. Annu. Rev. Genet. 56, 9.1–9.19 (2022).
doi: 10.1146/annurev-genet-072220-033342
French, S., Santangelo, T., Beyer, A. & Reeve, J. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).
pubmed: 17237472
doi: 10.1093/molbev/msm007
Weixlbaumer, A., Grunberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).
pubmed: 33995325
pmcid: 8116511
doi: 10.3389/fmicb.2021.661827
Grana, D., Gardella, T. & Susskind, M. The effects of mutations in the ant promoter of phage P22 depend on context. Genet. 120, 319–327 (1988).
doi: 10.1093/genetics/120.2.319
Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, 1989).
Punjani, A., Rubinstein, J., Fleet, D. & Brubaker, M. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Pettersen, E. et al. UCSF chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Jun, S.-H. et al. Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat. Commun. 11, 6123 (2020).
pubmed: 33257704
pmcid: 7704642
doi: 10.1038/s41467-020-19998-x
Klein, B. J. et al. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl Acad. Sci. USA 108, 46–550 (2011).
doi: 10.1073/pnas.1013828108
Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Afonine, T., Headd, J., Terwilliger, T. & Adams, P. Computational Crystallography Newsletter 4, 43–44; https://phenix-online.org/phenixwebsite_static/mainsite/files/newsletter/CCN_2013_07.pdf (2013).
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
pubmed: 15890530
doi: 10.1016/j.jsb.2005.03.010