Extra-osseous Roles of the RANK-RANKL-OPG Axis with a Focus on Skeletal Muscle.
Denosumab
Extra-osseous
NF-κB signalling
Osteoprotegerin
RANK-RANKL-OPG axis
Skeletal muscle
Journal
Current osteoporosis reports
ISSN: 1544-2241
Titre abrégé: Curr Osteoporos Rep
Pays: United States
ID NLM: 101176492
Informations de publication
Date de publication:
26 Sep 2024
26 Sep 2024
Historique:
accepted:
11
09
2024
medline:
26
9
2024
pubmed:
26
9
2024
entrez:
26
9
2024
Statut:
aheadofprint
Résumé
This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-OPG axis, primarily within skeletal muscle. Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and glucose metabolism. Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues, especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function. More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially those affected by aging.
Identifiants
pubmed: 39325366
doi: 10.1007/s11914-024-00890-2
pii: 10.1007/s11914-024-00890-2
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97(4):1566–71. https://doi.org/10.1073/pnas.97.4.1566 .
doi: 10.1073/pnas.97.4.1566
pubmed: 10677500
pmcid: 26475
Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab. 2021;39(1):13–8. https://doi.org/10.1007/s00774-020-01191-1 .
doi: 10.1007/s00774-020-01191-1
pubmed: 33385253
McGonigle JS, Giachelli CM, Scatena M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis. 2008;12(1):35–46. https://doi.org/10.1007/s10456-008-9127-z .
doi: 10.1007/s10456-008-9127-z
pubmed: 19105036
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci. 2019;20(3):705. https://doi.org/10.3390/ijms20030705 .
doi: 10.3390/ijms20030705
pubmed: 30736365
pmcid: 6387017
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40(1):2. https://doi.org/10.1186/s41232-019-0111-3 .
doi: 10.1186/s41232-019-0111-3
pubmed: 32047573
pmcid: 7006158
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol. 2020;10:1283. https://doi.org/10.3389/fonc.2020.01283 .
doi: 10.3389/fonc.2020.01283
pubmed: 32850393
pmcid: 7426519
Glasnovic A, O’Mara N, Kovacic N, Grcevic D, Gajovic S. RANK/RANKL/OPG Signaling in the Brain: A Systematic Review of the Literature. Front Neurol. 2020;11:590480. https://doi.org/10.3389/fneur.2020.590480 .
doi: 10.3389/fneur.2020.590480
pubmed: 33329338
pmcid: 7710989
Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462(7272):505–9. https://doi.org/10.1038/nature08596 .
doi: 10.1038/nature08596
pubmed: 19940926
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. https://doi.org/10.1038/s41586-018-0482-7 .
doi: 10.1038/s41586-018-0482-7
pubmed: 30185903
Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R, et al. Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications. J Funct Morphol Kinesiol. 2021;6(2):55. https://doi.org/10.3390/jfmk6020055 .
doi: 10.3390/jfmk6020055
pubmed: 34205747
pmcid: 8293201
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19. https://doi.org/10.1016/s0092-8674(00)80209-3 .
doi: 10.1016/s0092-8674(00)80209-3
pubmed: 9108485
Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, et al. Denosumab, a Fully Human Monoclonal Antibody to RANKL, Inhibits Bone Resorption and Increases BMD in Knock-In Mice That Express Chimeric (Murine/Human) RANKL. J Bone Miner Res. 2009;24(2):182–95. https://doi.org/10.1359/jbmr.081112 .
doi: 10.1359/jbmr.081112
pubmed: 19016581
Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65. https://doi.org/10.1056/NEJMoa0809493 .
doi: 10.1056/NEJMoa0809493
pubmed: 19671655
Pang KL, Low NY, Chin KY. A Review on the Role of Denosumab in Fracture Prevention. Drug Des Devel Ther. 2020;14:4029–51. https://doi.org/10.2147/DDDT.S270829 .
doi: 10.2147/DDDT.S270829
pubmed: 33061307
pmcid: 7534845
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. Am J Pathol. 2015;185(4):920–6. https://doi.org/10.1016/j.ajpath.2015.01.006 .
doi: 10.1016/j.ajpath.2015.01.006
pubmed: 25708645
Chotiyarnwong P, McCloskey E, Eastell R, McClung MR, Gielen E, Gostage J, et al. A Pooled Analysis of Fall Incidence From Placebo-controlled Trials of Denosumab. J Bone Miner Res. 2020;35(6):1014–21.
doi: 10.1002/jbmr.3972
pubmed: 31999376
Bone GH, Bolognese AM, Yuen KC, Kendler LD, Wang LH, Liu LY, et al. Effects of Denosumab on Bone Mineral Density and Bone Turnover in Postmenopausal Women. J Clin Endocrinol Metab. 2008;93(6):2149–57. https://doi.org/10.1210/jc.2007-2814 .
doi: 10.1210/jc.2007-2814
pubmed: 18381571
Langdahl LB, Teglbjærg SC, Ho LP-R, Chapurlat MR, Czerwinski DE, Kendler AD, et al. A 24-Month Study Evaluating the Efficacy and Safety of Denosumab for the Treatment of Men With Low Bone Mineral Density: Results From the ADAMO Trial. J Clin Endocrinol Metabolism. 2015;100(4):1335–42. https://doi.org/10.1210/jc.2014-4079 .
doi: 10.1210/jc.2014-4079
Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82. https://doi.org/10.1200/JCO.2008.16.3832 .
doi: 10.1200/JCO.2008.16.3832
pubmed: 18725648
Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TLJ, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55. https://doi.org/10.1056/NEJMoa0809003 .
doi: 10.1056/NEJMoa0809003
pubmed: 19671656
pmcid: 3038121
Phu S, Bani Hassan E, Vogrin S, Kirk B, Duque G. Effect of Denosumab on Falls, Muscle Strength, and Function in Community-Dwelling Older Adults. J Am Geriatr Soc. 2019;67(12):2660–1. https://doi.org/10.1111/jgs.16165 .
doi: 10.1111/jgs.16165
pubmed: 31483858
Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129(8):3214–23. https://doi.org/10.1172/JCI125915 .
doi: 10.1172/JCI125915
pubmed: 31120440
pmcid: 6668701
Rupp T, von Vopelius E, Strahl A, Oheim R, Barvencik F, Amling M, et al. Beneficial effects of denosumab on muscle performance in patients with low BMD: a retrospective, propensity score-matched study. Osteoporos Int. 2022;33(10):2177–84. https://doi.org/10.1007/s00198-022-06470-3 .
doi: 10.1007/s00198-022-06470-3
pubmed: 35751664
pmcid: 9546982
Lefkowitz SS, Lefkowitz DL, Kethley J. Treatment of facioscapulohumeral muscular dystrophy with Denosumab. Am J Case Rep. 2012;13:66–8. https://doi.org/10.12659/AJCR.882771 .
doi: 10.12659/AJCR.882771
pubmed: 23569491
pmcid: 3615920
Ralston SH, Taylor JP. Rare Inherited forms of Paget’s Disease and Related Syndromes. Calcif Tissue Int. 2019;104(5):501–16. https://doi.org/10.1007/s00223-019-00520-5 .
doi: 10.1007/s00223-019-00520-5
pubmed: 30756140
pmcid: 6779132
Theodorou SJ, Theodorou DJ. Global loss of bone, muscle, and fat mass in a patient with juvenile Paget disease (hereditary hyperphosphatasia). J Inherit Metab Dis. 2022;45(6):1203–4. https://doi.org/10.1002/jimd.12559 .
doi: 10.1002/jimd.12559
pubmed: 36107806
Kerr NM, Cassinelli HR, DiMeglio LA, Tau C, Tüysüz B, Cundy T, et al. Ocular manifestations of juvenile Paget disease. Arch Ophthalmol. 2010;128(6):698–703. https://doi.org/10.1001/archophthalmol.2010.76 .
doi: 10.1001/archophthalmol.2010.76
pubmed: 20547946
Saito-Hakoda A, Kikuchi A, Takahashi T, Yokoyama Y, Himori N, Adachi M, et al. Familial Paget’s disease of bone with ocular manifestations and a novel TNFRSF11A duplication variant (72dup27). J Bone Miner Metab. 2023;41(2):193–202. https://doi.org/10.1007/s00774-022-01392-w .
doi: 10.1007/s00774-022-01392-w
pubmed: 36520195
Bernardi S, Bossi F, Toffoli B, Fabris B. Roles and Clinical Applications of OPG and TRAIL as Biomarkers in Cardiovascular Disease. Biomed Res Int. 2016;2016:1752854–912. https://doi.org/10.1155/2016/1752854 .
doi: 10.1155/2016/1752854
pubmed: 27200369
pmcid: 4856888
Abedin M, Omland T, Ueland T, Khera A, Aukrust P, Murphy SA, et al. Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am J Cardiol. 2007;99(4):513–8. https://doi.org/10.1016/j.amjcard.2006.08.064 .
doi: 10.1016/j.amjcard.2006.08.064
pubmed: 17293196
Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175–80. https://doi.org/10.1161/01.CIR.0000127957.43874.BB .
doi: 10.1161/01.CIR.0000127957.43874.BB
pubmed: 15117849
Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars). 2020;15(1):457–63. https://doi.org/10.1515/med-2020-0046 .
doi: 10.1515/med-2020-0046
pubmed: 33336003
Miedany YE, Gaafary ME, Toth M, Hegazi MO, Aroussy NE, Hassan W, et al. Is there a potential dual effect of denosumab for treatment of osteoporosis and sarcopenia? Clin Rheumatol. 2021;40(10):4225–32. https://doi.org/10.1007/s10067-021-05757-w .
doi: 10.1007/s10067-021-05757-w
pubmed: 34008069
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF, et al. RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. J Bone Miner Res. 2022;37(3):381–96. https://doi.org/10.1002/jbmr.4480 .
doi: 10.1002/jbmr.4480
pubmed: 34904285
Hamoudi D, Bouredji Z, Marcadet L, Yagita H, Landry L-B, Argaw A, et al. Muscle weakness and selective muscle atrophy in osteoprotegerin-deficient mice. Hum Mol Genet. 2020;29(3):483–94. https://doi.org/10.1093/hmg/ddz312 .
doi: 10.1093/hmg/ddz312
pubmed: 31943048
Dufresne SS, Dumont NA, Boulanger-Piette A, Fajardo VA, Gamu D, Kake-Guena SA, et al. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol. 2016;310(8):C663–72. https://doi.org/10.1152/ajpcell.00285.2015 .
doi: 10.1152/ajpcell.00285.2015
pubmed: 26825123
pmcid: 4835920
Bouredji Z, Hamoudi D, Marcadet L, Argaw A, Frenette J. Testing the efficacy of a human full-length OPG-Fc analog in a severe model of cardiotoxin-induced skeletal muscle injury and repair. Mol Ther Methods Clin Dev. 2021;21:559–73. https://doi.org/10.1016/j.omtm.2021.03.022 .
doi: 10.1016/j.omtm.2021.03.022
pubmed: 33997104
pmcid: 8102421
Xiong J, Le Y, Rao Y, Zhou L, Hu Y, Guo S, et al. RANKL Mediates Muscle Atrophy and Dysfunction in a Cigarette Smoke-induced Model of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol. 2021;64(5):617–28. https://doi.org/10.1165/rcmb.2020-0449OC .
doi: 10.1165/rcmb.2020-0449OC
pubmed: 33689672
Hamoudi D, Marcadet L, Piette Boulanger A, Yagita H, Bouredji Z, Argaw A, et al. An anti-RANKL treatment reduces muscle inflammation and dysfunction and strengthens bone in dystrophic mice. Hum Mol Genet. 2019;28(18):3101–12. https://doi.org/10.1093/hmg/ddz124 .
doi: 10.1093/hmg/ddz124
pubmed: 31179501
Dufresne SS, Boulanger-Piette A, Bossé S, Argaw A, Hamoudi D, Marcadet L, et al. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathol Commun. 2018;6(1):31. https://doi.org/10.1186/s40478-018-0533-1 .
doi: 10.1186/s40478-018-0533-1
pubmed: 29699580
pmcid: 5922009
Zhang M, Chen M, Li Y, Rao M, Wang D, Wang Z, et al. Delayed denervation-induced muscle atrophy in Opg knockout mice. Front Physiol. 2023;14:1127474. https://doi.org/10.3389/fphys.2023.1127474 .
doi: 10.3389/fphys.2023.1127474
pubmed: 36909232
pmcid: 9992212
Cavalcanti de Araújo PH, Cezine MER, Vulczak A, Vieira LC, Matsuo FS, Remoto JM, et al. RANKL signaling drives skeletal muscle into the oxidative profile. J Bone Miner Res. 2024;39(6):753–64. https://doi.org/10.1093/jbmr/zjae058 .
doi: 10.1093/jbmr/zjae058
pubmed: 38619281
Rutti S, Dusaulcy R, Hansen JS, Howald C, Dermitzakis ET, Pedersen BK, et al. Angiogenin and Osteoprotegerin are type II muscle specific myokines protecting pancreatic beta-cells against proinflammatory cytokines. Sci Rep. 2018;8(1):10072–110. https://doi.org/10.1038/s41598-018-28117-2 .
doi: 10.1038/s41598-018-28117-2
pubmed: 29968746
pmcid: 6030123
Philippou A, Bogdanis G, Maridaki M, Halapas A, Sourla A, Koutsilieris M. Systemic cytokine response following exercise-induced muscle damage in humans. Clin Chem Lab Med. 2009;47(6):777–82. https://doi.org/10.1515/CCLM.2009.163 .
doi: 10.1515/CCLM.2009.163
pubmed: 19445648
Jayash SN, Hamoudi D, Stephen LA, Argaw A, Huesa C, Joseph S, et al. Anti-RANKL Therapy Prevents Glucocorticoid-Induced Bone Loss and Promotes Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Calcif Tissue Int. 2023;113(4):449–68. https://doi.org/10.1007/s00223-023-01116-w .
doi: 10.1007/s00223-023-01116-w
pubmed: 37470794
pmcid: 10516841
Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol. 2022;23(3):204–26. https://doi.org/10.1038/s41580-021-00421-2 .
doi: 10.1038/s41580-021-00421-2
pubmed: 34663964
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells. 2020;9(5):1297. https://doi.org/10.3390/cells9051297 .
doi: 10.3390/cells9051297
pubmed: 32456017
pmcid: 7290814
Gostage J. RANKL inhibition in the amelioration of sarcopenia: potential cross-tissue effects of musculoskeletal therapies. White Rose: University of Sheffield; 2023. https://etheses.whiterose.ac.uk/34566/ . Accessed 5 Jul 2024.
Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I. Role of alpha(v) integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res. 2008;76(3):139–44. https://doi.org/10.1016/j.mvr.2008.06.004 .
doi: 10.1016/j.mvr.2008.06.004
pubmed: 18656492
Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: Requirement of syndecan-3 for successful fiber formation. J Cell Sci. 2004;117(1):73–84. https://doi.org/10.1242/jcs.00828 .
doi: 10.1242/jcs.00828
pubmed: 14627628
Liu H, Niu A, Chen SE, Li YP. β3-Integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J. 2011;25(6):1914–21. https://doi.org/10.1096/fj.10-170449 .
doi: 10.1096/fj.10-170449
pubmed: 21350117
pmcid: 3101029
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med. 2016;22(6):479–96. https://doi.org/10.1016/j.molmed.2016.04.002 .
doi: 10.1016/j.molmed.2016.04.002
pubmed: 27161598
pmcid: 4885782
Sun Y, Li Y, Li J, Xie X, Gu F, Sui Z, et al. Efficacy of the Combination of Teriparatide and Denosumab in the Treatment of Postmenopausal Osteoporosis: A Meta-Analysis. Front Pharmacol. 2022;13:888208. https://doi.org/10.3389/fphar.2022.888208 .
doi: 10.3389/fphar.2022.888208
pubmed: 35685637
pmcid: 9170942
Zabłocka B, Górecki DC, Zabłocki K. Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. Int J Mol Sci. 2021;22(20):11040. https://doi.org/10.3390/ijms222011040 .
doi: 10.3390/ijms222011040
pubmed: 34681707
pmcid: 8537421
Piette AB, Dufresne SS, Frenette J. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles. BMC Musculoskelet Disord. 2016;17(1):1–7. https://doi.org/10.1186/s12891-016-1306-2 .
doi: 10.1186/s12891-016-1306-2
Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2012;43(1):12–21. https://doi.org/10.1007/s12020-012-9751-7 .
doi: 10.1007/s12020-012-9751-7
pubmed: 22815045
pmcid: 3586538
Thoma A, Lightfoot AP. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med Biol. 2018;1088:267–79. https://doi.org/10.1007/978-981-13-1435-3_12 .
doi: 10.1007/978-981-13-1435-3_12
pubmed: 30390256
Paul PK, Kumar A. TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy. 2011;7(5):555–6. https://doi.org/10.4161/auto.7.5.15102 .
doi: 10.4161/auto.7.5.15102
pubmed: 21412053
pmcid: 3127217
Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol. 2010;191(7):1395–411. https://doi.org/10.1083/jcb.201006098 .
doi: 10.1083/jcb.201006098
pubmed: 21187332
pmcid: 3010064
Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, et al. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol. 2012;32(7):1248–59. https://doi.org/10.1128/MCB.06351-11 .
doi: 10.1128/MCB.06351-11
pubmed: 22290431
pmcid: 3302447
Li J, Yi X, Yao Z, Chakkalakal JV, Xing L, Boyce BF. TNF Receptor-Associated Factor 6 Mediates TNFα-Induced Skeletal Muscle Atrophy in Mice During Aging. J Bone Miner Res. 2020;35(8):1535–48. https://doi.org/10.1002/jbmr.4021 .
doi: 10.1002/jbmr.4021
pubmed: 32267572
Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle. 2016;7(2):204–12. https://doi.org/10.1002/jcsm.12045 .
doi: 10.1002/jcsm.12045
pubmed: 27493873
Goljanek‐Whysall K, Soriano‐Arroquia A, McCormick R, Chinda C, McDonagh B. miR‐181a regulates p62/SQSTM1, parkin, and protein DJ‐1 promoting mitochondrial dynamics in skeletal muscle aging. Aging Cell. 2020;19(4):e13140-n/a. https://doi.org/10.1111/acel.13140
Ehlers Melissa L, Celona B, Black BL. NFATc1 Controls Skeletal Muscle Fiber Type and Is a Negative Regulator of MyoD Activity. Cell Rep. 2014;8(6):1639–48. https://doi.org/10.1016/j.celrep.2014.08.035 .
doi: 10.1016/j.celrep.2014.08.035
pubmed: 25242327
pmcid: 4180018
Dort J, Fabre P, Molina T, Dumont NA. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int. 2019;2019:4761427–520. https://doi.org/10.1155/2019/4761427 .
doi: 10.1155/2019/4761427
pubmed: 31396285
pmcid: 6664695
Yang W-L, Wang J, Chan C-H, Lee S-W, Campos AD, Lamothe B, et al. E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation. Science. 2009;325(5944):1134–8. https://doi.org/10.1126/science.1175065 .
doi: 10.1126/science.1175065
pubmed: 19713527
pmcid: 3008763
Li J, Wang CQ, Xiao WC, Chen Y, Tu J, Wan F, et al. TRAF Family Member 4 Promotes Cardiac Hypertrophy Through the Activation of the AKT Pathway. J Am Heart Assoc. 2023;12(17):e028185. https://doi.org/10.1161/JAHA.122.028185 .
doi: 10.1161/JAHA.122.028185
pubmed: 37642020
pmcid: 10547335
Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, et al. Secreted Frizzled-Related Protein-1 Inhibits RANKL-Dependent Osteoclast Formation. J Bone Miner Res. 2004;19(11):1873–81. https://doi.org/10.1359/JBMR.040807 .
doi: 10.1359/JBMR.040807
pubmed: 15476588
Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. https://doi.org/10.1038/nm.4076 .
doi: 10.1038/nm.4076
pubmed: 27064449
Marcadet L, Bouredji Z, Argaw A, Frenette J. The Roles of RANK/RANKL/OPG in Cardiac, Skeletal, and Smooth Muscles in Health and Disease. Front Cell Dev Biol. 2022;10:903657. https://doi.org/10.3389/fcell.2022.903657 .
doi: 10.3389/fcell.2022.903657
pubmed: 35693934
pmcid: 9181319
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, et al. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci. 2022;23(24):16223. https://doi.org/10.3390/ijms232416223 .
doi: 10.3390/ijms232416223
pubmed: 36555864
pmcid: 9782806
Zheng D, Zhang M, Liu T, Zhou T, Shen A. Osteoprotegerin prompts cardiomyocyte hypertrophy via autophagy inhibition mediated by FAK/BECLIN1 pathway. Life Sci. 2021;264:118550. https://doi.org/10.1016/j.lfs.2020.118550 .
doi: 10.1016/j.lfs.2020.118550
pubmed: 33035582
Hao Y, Tsuruda T, Sekita-Hatakeyama Y, Kurogi S, Kubo K, Sakamoto S, et al. Cardiac hypertrophy is exacerbated in aged mice lacking the Osteoprotegerin gene. Cardiovasc Res. 2016;110(1):62–72. https://doi.org/10.1093/cvr/cvw025 .
doi: 10.1093/cvr/cvw025
pubmed: 26825553
Tsuruda T, Koyama S, Onitsuka H, Ishikawa T, Kitamura K. Osteoprotegerin is secreted into coronary circulation: a possible link to renin-angiotensin system and cardiac hypertrophy. Journal of the American College of Cardiology. 2014;63(12):A783-A. https://doi.org/10.1055/s-0034-1375611
Marcadet L, Juracic ES, Khan N, Bouredji Z, Yagita H, Ward LM, et al. RANKL inhibition reduces cardiac hypertrophy in mdx mice and possibly in children with duchenne muscular dystrophy. Cells. 2023;12(11). https://doi.org/10.3390/cells12111538 .
Shimamura M, Nakagami H, Osako MK, Kurinami H, Koriyama H, Zhengda P, et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A. 2014;111(22):8191–6. https://doi.org/10.1073/pnas.1400544111 .
doi: 10.1073/pnas.1400544111
pubmed: 24847069
pmcid: 4050556
Kichev A, Eede P, Gressens P, Thornton C, Hagberg H. Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli. Dev Neurosci. 2017;39(1–4):192–206. https://doi.org/10.1159/000464244 .
doi: 10.1159/000464244
pubmed: 28402971
Hofbauer LC, Cepok S, Hemmer B. Osteoprotegerin is highly expressed in the spinal cord and cerebrospinal fluid. Acta Neuropathol. 2004;107(6):575–7. https://doi.org/10.1007/s00401-004-0854-y .
doi: 10.1007/s00401-004-0854-y
pubmed: 15106011
Kichev A, Rousset CI, Baburamani AA, Levison SW, Wood TL, Gressens P, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J Biol Chem. 2014;289(13):9430–9. https://doi.org/10.1074/jbc.M113.512350 .
doi: 10.1074/jbc.M113.512350
pubmed: 24509861
pmcid: 3979382
Nabipour I, Kalantarhormozi M, Larijani B, Assadi M, Sanjdideh Z. Osteoprotegerin in relation to type 2 diabetes mellitus and the metabolic syndrome in postmenopausal women. Metabolism. 2010;59(5):742–7. https://doi.org/10.1016/j.metabol.2009.09.019 .
doi: 10.1016/j.metabol.2009.09.019
pubmed: 19922962
Karalazou P, Ntelios D, Chatzopoulou F, Fragou A, Taousani M, Mouzaki K, et al. OPG/RANK/RANKL signaling axis in patients with type i diabetes: Associations with parathormone and vitamin D. Ital J Pediatr. 2019;45(1):161. https://doi.org/10.1186/s13052-019-0748-1 .
doi: 10.1186/s13052-019-0748-1
pubmed: 31823791
pmcid: 6902340
Moh AMC, Pek SLT, Liu J, Wang J, Subramaniam T, Ang K, et al. Plasma osteoprotegerin as a biomarker of poor glycaemic control that predicts progression of albuminuria in type 2 diabetes mellitus: A 3-year longitudinal cohort study. Diabetes Res Clin Pract. 2020;161:107992. https://doi.org/10.1016/j.diabres.2019.107992 .
doi: 10.1016/j.diabres.2019.107992
pubmed: 32032675
Huang HK, Chuang AT, Liao TC, Shao SC, Liu PP, Tu YK, et al. Denosumab and the Risk of Diabetes in Patients Treated for Osteoporosis. JAMA Netw Open. 2024;7(2):e2354734. https://doi.org/10.1001/jamanetworkopen.2023.54734 .
doi: 10.1001/jamanetworkopen.2023.54734
pubmed: 38335002
pmcid: 10858399
Kondegowda Nagesha G, Fenutria R, Pollack Ilana R, Orthofer M, Garcia-Ocaña A, Penninger Josef M, et al. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metab. 2015;22(1):77–85. https://doi.org/10.1016/j.cmet.2015.05.021 .
doi: 10.1016/j.cmet.2015.05.021
pubmed: 26094891
pmcid: 4597781
Matsuo FS, Cavalcanti de Araújo PH, Mota RF, Carvalho AJR, Santos de Queiroz M, Baldo de Almeida B, et al. RANKL induces beige adipocyte differentiation in preadipocytes. Am J Physiol Endocrinol Metab. 2020;318(6):E866–77. https://doi.org/10.1152/ajpendo.00397.2019 .
doi: 10.1152/ajpendo.00397.2019
pubmed: 32315212
Vachliotis ID, Polyzos SA. Osteoprotegerin/Receptor Activator of Nuclear Factor-Kappa B Ligand/Receptor Activator of Nuclear Factor-Kappa B Axis in Obesity, Type 2 Diabetes Mellitus, and Nonalcoholic Fatty Liver Disease. Curr Obes Rep. 2023;12(2):147–62. https://doi.org/10.1007/s13679-023-00505-4 .
doi: 10.1007/s13679-023-00505-4
pubmed: 37208545
pmcid: 10250495
Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19(3):358–63. https://doi.org/10.1038/nm.3084 .
doi: 10.1038/nm.3084
pubmed: 23396210
Passeri E, Benedini S, Costa E, Corbetta S. A Single 60 mg Dose of Denosumab Might Improve Hepatic Insulin Sensitivity in Postmenopausal Nondiabetic Severe Osteoporotic Women. Int J Endocrinol. 2015;2015:352858. https://doi.org/10.1155/2015/352858 .
doi: 10.1155/2015/352858
pubmed: 25873952
pmcid: 4383275
Malle EK, Zammit NW, Walters SN, Koay YC, Wu J, Tan BM, et al. Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity. J Exp Med. 2015;212(8):1239–54. https://doi.org/10.1084/jem.20150218 .
doi: 10.1084/jem.20150218
pubmed: 26122662
pmcid: 4516791
Kondegowda NG, Filipowska J, Do JS, Leon-Rivera N, Li R, Hampton R, et al. RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 diabetes. Sci Adv. 2023;9(44):eadf5238. https://doi.org/10.1126/sciadv.adf5238 .
doi: 10.1126/sciadv.adf5238
pubmed: 37910614
pmcid: 10619938
Chung PL, Zhou S, Eslami B, Shen L, LeBoff MS, Glowacki J. Effect of age on regulation of human osteoclast differentiation. J Cell Biochem. 2014;115(8):1412–9. https://doi.org/10.1002/jcb.24792 .
doi: 10.1002/jcb.24792
pubmed: 24700654
pmcid: 4096781