Cortisol and cortisone determination by disposable pipette extraction (DPX) and ultra-efficient liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) in urine and saliva samples from patients with Parkinson's disease.
Anxiety
Cortisol
Cortisone
Sample preparation
Urine
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
26 Sep 2024
26 Sep 2024
Historique:
received:
26
07
2024
accepted:
17
09
2024
revised:
12
09
2024
medline:
27
9
2024
pubmed:
27
9
2024
entrez:
26
9
2024
Statut:
aheadofprint
Résumé
Higher serum cortisol levels appear to be associated with stress that can overlap or manifest anxiety, fatigue, depression, and sleep dysfunction. These are common and intrusive non-motor symptoms of Parkinson's disease (PD). Thus, stress has been proposed to mediate Parkinson's disease development, and cortisol has been suggested as a biomarker for the generation of stress-related symptoms in Parkinson's disease. This study describes sensitive and robust disposable pipette extraction (DPX) and ultra-efficient liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to determine cortisol and cortisone (as potential endocrine biomarkers for Parkinson's disease) in 24-h urine and saliva samples obtained from Parkinson's disease patients. Important parameters on DPX extraction were optimized to achieve the best extraction recovery and cleanup efficiency. The proposed method was linear from 0.5 (lower limit of quantification) to 500 ng mL
Identifiants
pubmed: 39327306
doi: 10.1007/s00216-024-05557-6
pii: 10.1007/s00216-024-05557-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
Références
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary biomarkers for Parkinson’s disease: a systematic review with meta-analysis. Cells. 2024;13:340. https://doi.org/10.3390/cells13040340 .
doi: 10.3390/cells13040340
pubmed: 38391952
pmcid: 10887027
Chagas MHN, Oliveira THGF, Linares IMP, Balarini FB, Chagas NMS, Tumas V, Crippa JAS. Can anxiety increase tremors in patients with Parkinson’s disease? An experimental model. Arch Clin Psychiatry (São Paulo). 2017;44:85–8. https://doi.org/10.1590/0101-60830000000126 .
doi: 10.1590/0101-60830000000126
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in diagnosing Parkinson’s disease. Lancet Neurol. 2021;20:385–97. https://doi.org/10.1016/S1474-4422(21)00030-2 .
doi: 10.1016/S1474-4422(21)00030-2
pubmed: 33894193
pmcid: 8185633
van Wamelen DJ, Wan Y-M, Ray Chaudhuri K, Jenner P. Stress and cortisol in Parkinson’s disease. 2020;152:131–56. https://doi.org/10.1016/bs.irn.2020.01.005 .
El-Farhan N, Rees DA, Evans C. Measuring cortisol in serum, urine and saliva – are our assays good enough? Ann Clin Biochem Int J Lab Med. 2017;54:308–22. https://doi.org/10.1177/0004563216687335 .
doi: 10.1177/0004563216687335
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151. https://doi.org/10.1210/er.2010-0013 .
doi: 10.1210/er.2010-0013
pubmed: 21051590
Rosmalen JGM, Kema IP, Wüst S, van der Ley C, Visser ST, Snieder H, Bakker SJL. 24h urinary free cortisol in large-scale epidemiological studies: short-term and long-term stability and sources of variability. Psychoneuroendocrinology. 2014;47:10–6. https://doi.org/10.1016/j.psyneuen.2014.04.018 .
doi: 10.1016/j.psyneuen.2014.04.018
pubmed: 25001951
Boolani A, Channaveerappa D, Dupree EJ, Jayathirtha M, Aslebagh R, Grobe S, Wilkinson T, Darie CC. Trends in analysis of cortisol and its derivatives. In: Woods A, Darie C (eds) Advancements of mass spectrometry in biomedical research, 2 ed. 2019: pp 649–664
Antonelli G, Artusi C, Marinova M, Brugnolo L, Zaninotto M, Scaroni C, Gatti R, Mantero F, Plebani M. Cortisol and cortisone ratio in urine: LC-MS/MS method validation and preliminary clinical application. Clin Chem Lab Med. 2014;52:. https://doi.org/10.1515/cclm-2013-0471
Casals G, Hanzu FA. Cortisol measurements in Cushing’s syndrome: immunoassay or mass spectrometry? Ann Lab Med. 2020;40:285–96. https://doi.org/10.3343/alm.2020.40.4.285 .
doi: 10.3343/alm.2020.40.4.285
pubmed: 32067427
pmcid: 7054699
Lanfermeijer M, van Winden LJ, Starreveld DEJ, Razab-Sekh S, van Faassen M, Bleiker EMA, van Rossum HH. An LC-MS/MS-based method for the simultaneous quantification of melatonin, cortisol and cortisone in saliva. Anal Biochem. 2024;689:115496. https://doi.org/10.1016/j.ab.2024.115496 .
doi: 10.1016/j.ab.2024.115496
pubmed: 38431140
Oßwald A, Wang R, Beuschlein F, Hartmann MF, Wudy SA, Bidlingmaier M, Zopp S, Reincke M, Ritzel K. Performance of LC–MS/MS and immunoassay based 24-h urine free cortisol in the diagnosis of Cushing’s syndrome. J Steroid Biochem Mol Biol. 2019;190:193–7. https://doi.org/10.1016/j.jsbmb.2019.04.004 .
doi: 10.1016/j.jsbmb.2019.04.004
pubmed: 30959155
Ray JA, Kish-Trier E, Johnson LM. Measurement of urinary free cortisol and cortisone by LC-MS/MS. 2022;119–28. https://doi.org/10.1007/978-1-0716-2565-1_11 .
Vogg N, Müller T, Floren A, Dandekar T, Scherf-Clavel O, Fassnacht M, Kroiss M, Kurlbaum M. Targeted metabolic profiling of urinary steroids with a focus on analytical accuracy and sample stability. J Mass Spectrom Adv Clin Lab. 2022;25:44–52. https://doi.org/10.1016/j.jmsacl.2022.07.006 .
doi: 10.1016/j.jmsacl.2022.07.006
pubmed: 35910411
pmcid: 9334310
Xu W, Cui Y, Guo D, Wang W, Xu H, Qiao S, Yu H, Ji E, Liu Y, Li Q. UPLC-MS/MS simultaneous quantification of urinary circadian rhythm hormones and related metabolites: application to air traffic controllers. J Chromatogr B. 2023;1222:123664. https://doi.org/10.1016/j.jchromb.2023.123664 .
doi: 10.1016/j.jchromb.2023.123664
Ray JA, Bajaj AO, Trier EK, Johnson LM. Iatrogenic Cushing syndrome in 24-hour urine free cortisol measurement. Clin Chim Acta. 2022;534:173–5. https://doi.org/10.1016/j.cca.2022.07.019 .
doi: 10.1016/j.cca.2022.07.019
pubmed: 35931175
Shen Y, Luo X, Guan Q, Cheng L. A dilute and shoot method for urinary free cortisol analysis by LC-MS/MS. J Chromatogr B. 2024;1239:124127. https://doi.org/10.1016/j.jchromb.2024.124127 .
doi: 10.1016/j.jchromb.2024.124127
Carasek E, Morés L, Huelsmann RD. Disposable pipette extraction: a critical review of concepts, applications, and directions. Anal Chim Acta. 2022;1192:339383. https://doi.org/10.1016/j.aca.2021.339383 .
doi: 10.1016/j.aca.2021.339383
pubmed: 35057962
de Oliveira IGC, Marchioni C, Queiroz MEC. Determination of anandamide in cerebrospinal fluid samples by disposable pipette extraction and ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B. 2019;1130–1131:121809. https://doi.org/10.1016/j.jchromb.2019.121809 .
doi: 10.1016/j.jchromb.2019.121809
Turoňová D, KujovskáKrčmová L, Švec F. Application of microextraction in pipette tips in clinical and forensic toxicology. TrAC Trends Anal Chem. 2021;143:116404. https://doi.org/10.1016/j.trac.2021.116404 .
doi: 10.1016/j.trac.2021.116404
Wang W, Liu X, Zhang P, Wang M, Han Y, Yan H. Simultaneous determination of three biomarkers of non-small cells lung cancer in urine by pipette-tip solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J Chromatogr A. 2023;1711:464448. https://doi.org/10.1016/j.chroma.2023.464448 .
doi: 10.1016/j.chroma.2023.464448
pubmed: 37852047
Oenning AL, Merib J, Carasek E. An effective and high-throughput analytical methodology for pesticide screening in human urine by disposable pipette extraction and gas chromatography – mass spectrometry. J Chromatogr B. 2018;1092:459–65. https://doi.org/10.1016/j.jchromb.2018.06.047 .
doi: 10.1016/j.jchromb.2018.06.047
Karas LK, Patterson C, Fuller ZJ, Karschner EL. Automated extraction and LC–MS-MS analysis of 11-nor-9-carboxy-tetrahydrocannabinol isomers and prevalence in authentic urine specimens. J Anal Toxicol. 2024;48:197–203. https://doi.org/10.1093/jat/bkae031 .
doi: 10.1093/jat/bkae031
pubmed: 38581658
Gomes IC, Martins RO, Machado LS, Cardoso AT, de Souza PS, Coltro WKT, de Tarso GP, Chaves AR. Molecularly imprinted polymer as sorbent phase for disposable pipette extraction: a potential approach for creatinine analysis in human urine samples. J Pharm Biomed Anal. 2022;211:114625. https://doi.org/10.1016/j.jpba.2022.114625 .
doi: 10.1016/j.jpba.2022.114625
pubmed: 35123327
Silva WR, Ribeiro MMAC, Richter EM, Batista AD, da SilveiraPetruci JF. A molecularly imprinted polymer-disposable pipette tip extraction-capillary electrophoresis (MISPE-DPX-CE) method for the preconcentration and determination of scopolamine in synthetic urine samples. Chemosensors. 2022;10:387. https://doi.org/10.3390/chemosensors10100387 .
doi: 10.3390/chemosensors10100387
Gomes NC, Cabrices OG, De Martinis BS. Innovative disposable pipette extraction for concurrent analysis of fourteen psychoactive substances in drug users’ sweat. J Chromatogr A. 2024;1730:465136. https://doi.org/10.1016/j.chroma.2024.465136 .
doi: 10.1016/j.chroma.2024.465136
pubmed: 38968663
Rocha BA, da Costa BRB, de Albuquerque NCP, de Oliveira ARM, Souza JMO, Al-Tameemi M, Campiglia AD, Barbosa F Jr. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta. 2016;154:511–9. https://doi.org/10.1016/j.talanta.2016.03.098 .
doi: 10.1016/j.talanta.2016.03.098
pubmed: 27154708
Rocha BA, de Oliveira ARM, Barbosa F. A fast and simple air-assisted liquid-liquid microextraction procedure for the simultaneous determination of bisphenols, parabens, benzophenones, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry. Talanta. 2018;183:94–101. https://doi.org/10.1016/j.talanta.2018.02.052 .
doi: 10.1016/j.talanta.2018.02.052
pubmed: 29567194
Garde AH, Hansen ÅM. Long-term stability of salivary cortisol. Scand J Clin Lab Invest. 2005;65:433–6. https://doi.org/10.1080/00365510510025773 .
doi: 10.1080/00365510510025773
pubmed: 16081365
FDA Draft guidance for industry: bioanalytical method validation. 2013
Agency EM. Guideline on bioanalytical method validation. 2018
González O, Dubbelman A-C, Hankemeier T. Postcolumn infusion as a quality control tool for LC-MS-based analysis. J Am Soc Mass Spectrom. 2022;33:1077–80. https://doi.org/10.1021/jasms.2c00022 .
doi: 10.1021/jasms.2c00022
pubmed: 35483670
pmcid: 10443037
First MWJBLSR. User's guide for the SCID-5-PD: structured clinical interview for DSM-5 personality disorders. 2015.
Haukoos JS, Lewis RJ. Advanced statistics: bootstrapping confidence intervals for statistics with “difficult” distributions. Acad Emerg Med. 2005;12:360–5. https://doi.org/10.1197/j.aem.2004.11.018 .
doi: 10.1197/j.aem.2004.11.018
pubmed: 15805329
Field AP. Discovering statistics using IBM SPSS Statistics. 5th ed. London: SAGE Publications Ltd; 2017.
Murakami H, Aoyanagi T, Miki Y, Tomita H, Esaka Y, Inoue Y, Teshima N. Effects of hydrophilic monomers on sorptive properties of divinylbenzene-based reversed phase sorbents. Talanta. 2018;185:427–32. https://doi.org/10.1016/j.talanta.2018.03.093 .
doi: 10.1016/j.talanta.2018.03.093
pubmed: 29759223
Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev. 2008;29(Suppl 1):S83–7.
pubmed: 18852864
pmcid: 2556590
Blair J, Adaway J, Keevil B, Ross R. Salivary cortisol and cortisone in the clinical setting. Curr Opin Endocrinol Diabetes Obes. 2017;24:161–8. https://doi.org/10.1097/MED.0000000000000328 .
doi: 10.1097/MED.0000000000000328
pubmed: 28375882
Soares NM, Pereira GM, Altmann V, de Almeida RMM, Rieder CRM. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: a systematic review. J Neural Transm. 2019;126:219–32. https://doi.org/10.1007/s00702-018-1947-4 .
doi: 10.1007/s00702-018-1947-4
pubmed: 30374595
Costa CM, de Oliveira GL, Fonseca ACS, de Lana RC, Polese JC, Pernambuco AP. Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neurosci Lett. 2019;708:134359. https://doi.org/10.1016/j.neulet.2019.134359 .
doi: 10.1016/j.neulet.2019.134359
pubmed: 31265872
Stypuła G, Kunert-Radek J, Stępień H, Żylińska K, Pawlikowski M. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with Parkinson’s disease. NeuroImmunoModulation. 1996;3:131–4. https://doi.org/10.1159/000097237 .
doi: 10.1159/000097237
pubmed: 8945728
Volpi R, Caffarra P, Boni S, Scaglioni A, Malvezzi L, Saginario A, Chiodera P, Coiro V. ACTH/cortisol involvement in the serotonergic disorder affecting the Parkinsonian brain. Neuropsychobiology. 1997;35:73–8. https://doi.org/10.1159/000119394 .
doi: 10.1159/000119394
pubmed: 9097297
Vieira JCF (2019) Anxiety disorders in Parkinson's disease: validation study of the Parkinson's Anxiety Scale (PAS) and association with the endocannabinoid system. University of Sao Paulo. https://doi.org/10.11606/T.17.2020.tde-11022020-153242 .
Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, Dicke A, Kusnekov A. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics. 2010;51:474–9. https://doi.org/10.1176/appi.psy.51.6.474 .
doi: 10.1176/appi.psy.51.6.474
pubmed: 21051678
pmcid: 2987579
Bellomo G, Santambrogio L, Fiacconi M, Scarponi AM, Ciuffetti G. Plasma profiles of adrenocorticotropic hormone, cortisol, growth hormone and prolactin in patients with untreated parkinson’s disease. J Neurol. 1991;238:19–22. https://doi.org/10.1007/BF00319704 .
doi: 10.1007/BF00319704
pubmed: 1851513
Bae YJ, Gaudl A, Jaeger S, Stadelmann S, Hiemisch A, Kiess W, Willenberg A, Schaab M, von Klitzing K, Thiery J, Ceglarek U, Döhnert M, Kratzsch J. Immunoassay or LC-MS/MS for the measurement of salivary cortisol in children? Clin Chem Lab Med 2016;54:. https://doi.org/10.1515/cclm-2015-0412