Machine learning of the prime distribution.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2024
Historique:
received: 02 02 2024
accepted: 12 03 2024
medline: 27 9 2024
pubmed: 27 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

In the present work we use maximum entropy methods to derive several theorems in probabilistic number theory, including a version of the Hardy-Ramanujan Theorem. We also provide a theoretical argument explaining the experimental observations of Y.-H. He about the learnability of primes, and posit that the Erdős-Kac law would very unlikely be discovered by current machine learning techniques. Numerical experiments that we perform corroborate our theoretical findings.

Identifiants

pubmed: 39331654
doi: 10.1371/journal.pone.0301240
pii: PONE-D-24-04600
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0301240

Informations de copyright

Copyright: © 2024 Kolpakov, Rocke. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Auteurs

Alexander Kolpakov (A)

University of Neuchâtel, Neuchâtel, Switzerland.

A Alistair Rocke (AA)

Solomonoff Consulting, Rotterdam, Netherlands.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH