A hierarchical atlas of the human cerebellum for functional precision mapping.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 27 02 2024
accepted: 30 08 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional atlas that integrates information from seven large-scale datasets, outperforming existing group atlases. The atlas has three further advantages. First, the atlas allows for precision mapping in individuals: the integration of the probabilistic group atlas with an individual localizer scan results in a marked improvement in prediction of individual boundaries. Second, we provide both asymmetric and symmetric versions of the atlas. The symmetric version, which is obtained by constraining the boundaries to be the same across hemispheres, is especially useful in studying functional lateralization. Finally, the regions are hierarchically organized across three levels, allowing analyses at the appropriate level of granularity. Overall, the present atlas is an important resource for the study of the interdigitated functional organization of the human cerebellum in health and disease.

Identifiants

pubmed: 39333089
doi: 10.1038/s41467-024-52371-w
pii: 10.1038/s41467-024-52371-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8376

Subventions

Organisme : Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ID : RGPIN-2016-04890
Organisme : Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre (Skin Research Training Centre)
ID : PJT-507612

Informations de copyright

© 2024. The Author(s).

Références

Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).
pubmed: 19555291 doi: 10.1146/annurev.neuro.31.060407.125606
Schmahmann, J. D. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Nurse Pract. 16, 367–378 (2004).
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).
pubmed: 31285616 pmcid: 8312478 doi: 10.1038/s41593-019-0436-x
Schmahmann, J. D. et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10, 233–260 (1999).
pubmed: 10458940 doi: 10.1006/nimg.1999.0459
Diedrichsen, J., Balsters, J. H. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).
pubmed: 19457380 doi: 10.1016/j.neuroimage.2009.01.045
Ji, J. L. et al. Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185, 35–57 (2019).
pubmed: 30291974 doi: 10.1016/j.neuroimage.2018.10.006
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).
pubmed: 21795627 pmcid: 3214121 doi: 10.1152/jn.00339.2011
Zhi, D. et al. A hierarchical Bayesian brain parcellation framework for fusion of functional imaging datasets. bioRxiv https://doi.org/10.1101/2023.05.24.542121 (2023)
Bijsterbosch, J. et al. Challenges and future directions for representations of functional brain organization. Nat. Neurosci. 23, 1484–1495 (2020).
pubmed: 33106677 doi: 10.1038/s41593-020-00726-z
Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).
pubmed: 26212711 pmcid: 4642864 doi: 10.1016/j.neuron.2015.06.037
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).
pubmed: 28728026 pmcid: 5519493 doi: 10.1016/j.neuron.2017.06.038
Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 146, 918–939 (2017).
pubmed: 27640749 doi: 10.1016/j.neuroimage.2016.08.032
Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).
pubmed: 23395382 pmcid: 3746075 doi: 10.1016/j.neuron.2012.12.028
Marek, S. et al. Spatial and temporal organization of the individual human cerebellum. Neuron 100, 977–993 (2018).
pubmed: 30473014 pmcid: 6351081 doi: 10.1016/j.neuron.2018.10.010
Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 1, 358–384 (2020).
Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. cortex 29, 2533–2551 (2019).
pubmed: 29878084 doi: 10.1093/cercor/bhy123
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989).
pubmed: 23968463 doi: 10.1162/jocn.1989.1.2.153
Gaiser, C. et al. Large data on the small brain: Population-wide cerebellar growth models of children and adolescents. https://doi.org/10.1101/2023.04.26.538263 .(2023)
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).
pubmed: 24991964 pmcid: 4082806 doi: 10.1016/j.neuron.2014.05.014
Tavor, I. et al. Task-free MRI predicts individual differences in brain activity during task performance. Science 352, 216–220 (2016).
pubmed: 27124457 pmcid: 6309730 doi: 10.1126/science.aad8127
Saadon-Grosman, N., Angeli, P. A., DiNicola, L. M. & Buckner, R. L. A third somatomotor representation in the human cerebellum. J. Neurophysiol. 128, 1051–1073 (2022).
pubmed: 36130164 pmcid: 9576182 doi: 10.1152/jn.00165.2022
Zhi, D., King, M., Hernandez-Castillo, C. R. & Diedrichsen, J. Evaluating brain parcellations using the distance-controlled boundary coefficient. Hum. Brain Mapp. 43, 3706–3720 (2022).
pubmed: 35451538 pmcid: 9294308 doi: 10.1002/hbm.25878
van Es, D. M., van der Zwaag, W. & Knapen, T. Retinotopic maps of visual space in the human cerebellum. Curr. Biol. 29, 1689–1694.e3 (2019).
pubmed: 31080082 doi: 10.1016/j.cub.2019.04.012
Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).
pubmed: 32771330 pmcid: 7116395 doi: 10.1016/j.tics.2020.06.012
Assem, M., Shashidhara, S., Glasser, M. F. & Duncan, J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. bioRxiv https://doi.org/10.1101/2022.12.01.518720 (2022).
DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).
pubmed: 32049593 pmcid: 7099479 doi: 10.1152/jn.00529.2019
King, M., Shahshahani, L., Ivry, R. B. & Diedrichsen, J. A task-general connectivity model reveals variation in convergence of cortical inputs to functional regions of the cerebellum. eLife 12, e81511 (2023).
pubmed: 37083692 pmcid: 10129326 doi: 10.7554/eLife.81511
Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage https://doi.org/10.7551/mitpress/7570.003.0005 (2010)
Fedorenko, E., Hsieh, P. J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. https://doi.org/10.1152/jn.00032.2010 (2010)
Dodell-Feder, D., Koster-Hale, J., Bedny, M. & Saxe, R. fMRI item analysis in a theory of mind task. NeuroImage 55, 705–712 (2011).
pubmed: 21182967 doi: 10.1016/j.neuroimage.2010.12.040
Guell, X., Schmahmann, J. D., Gabrieli, J. D. & Ghosh, S. S. Functional gradients of the cerebellum. Elife 7, e36652 (2018).
pubmed: 30106371 pmcid: 6092123 doi: 10.7554/eLife.36652
Diedrichsen, J. & Zotow, E. Surface-based display of volume-averaged cerebellar imaging data. PloS one 10, e0133402 (2015).
pubmed: 26230510 pmcid: 4521932 doi: 10.1371/journal.pone.0133402
Sereno, M. I. et al. Proc. Nati Acad. Sci. USA 117, 19538–19543 (2020).
Stoodley, C. J., MacMore, J. P., Makris, N., Sherman, J. C. & Schmahmann, J. D. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage: Clin. 12, 765–775 (2016).
pubmed: 27812503 doi: 10.1016/j.nicl.2016.10.013
Schild, R. F. On the inferior olive of the albino rat. J. Compar. Neurol. https://doi.org/10.1002/cne.901400302 . (1970)
Sugihara, I., Wu, H. S. & Shinoda, Y. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J. Neurosci. https://doi.org/10.1523/jneurosci.21-19-07715.2001 (2001)
Biswas, M. S., Luo, Y., Sarpong, G. A. & Sugihara, I. Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J. Comp. Neurol. 527, 1966–1985 (2019).
pubmed: 30737986 doi: 10.1002/cne.24662
Mahowald, K. & Fedorenko, E. Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability. NeuroImage 139, 74–93 (2016).
pubmed: 27261158 doi: 10.1016/j.neuroimage.2016.05.073
Fedorenko, E., Ivanova, A. A. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-024-00802-4 (2024)
Van Overwalle, F. et al. The involvement of the posterior cerebellum in reconstructing and predicting social action sequences. Cerebellum 21, 733–741 (2022).
pubmed: 34694590 doi: 10.1007/s12311-021-01333-9
D’Mello, A. M., Turkeltaub, P. E. & Stoodley, C. J. Cerebellar tdcs modulates neural circuits during semantic prediction: a combined tDCS-fMRI study. J. Neurosci. 37, 1604–1613 (2017).
pubmed: 28069925 pmcid: 5299574 doi: 10.1523/JNEUROSCI.2818-16.2017
D’Mello, A. M., Gabrieli, J. D. E. & Nee, D. E. Evidence for hierarchical cognitive control in the human cerebellum. Curr. Biol. 30, 1881–1892.e3 (2020).
pubmed: 32275880 pmcid: 7289516 doi: 10.1016/j.cub.2020.03.028
Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020).
pubmed: 32965153 pmcid: 8356783 doi: 10.1152/jn.00753.2019
Bijsterbosch, J. D. et al. The relationship between spatial configuration and functional connectivity of brain regions. eLife 7, e32992 (2018).
pubmed: 29451491 pmcid: 5860869 doi: 10.7554/eLife.32992
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).
pubmed: 22658708 pmcid: 4120275 doi: 10.1016/j.biopsych.2012.04.028
Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78, 337–339 (2021).
pubmed: 33237320 doi: 10.1001/jamapsychiatry.2020.3794
Cash, R. F. H. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. https://doi.org/10.1016/j.biopsych.2018.12.002 (2019)
Nettekoven, C. et al. Cerebellar GABA change during visuomotor adaptation relates to adaptation performance and cerebellar network connectivity: a magnetic resonance spectroscopic imaging study. J. Neurosci. 42, JN-RM-0096–22 (2022).
Shahshahani, L., King, M., Nettekoven, C., Ivry, R. & Diedrichsen, J. Selective recruitment: evidence for task-dependent gating of inputs to the cerebellum. bioRxiv https://doi.org/10.1101/2023.01.25.525395 (2023).
Nakai, T. & Nishimoto, S. Quantitative models reveal the organization of diverse cognitive functions in the brain. Nat. Commun. 11, 1–12 (2020).
doi: 10.1038/s41467-020-14913-w
Pinho, A. L. et al. Individual brain charting, a high-resolution fMRI dataset for cognitive mapping. Sci. data 5, 1–15 (2018).
doi: 10.1038/sdata.2018.105
Pinho, A. L. et al. Individual brain charting dataset extension, second release of high-resolution fMRI data for cognitive mapping. Sci. Data 7, 353 (2020).
pubmed: 33067452 pmcid: 7567863 doi: 10.1038/s41597-020-00670-4
Van Essen, D. C. et al. The WU-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880 doi: 10.1016/j.neuroimage.2013.05.041
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415 doi: 10.1016/j.neuroimage.2013.05.039
Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).
pubmed: 22047963 doi: 10.1093/cercor/bhr291
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782–790 (2012).
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015

Auteurs

Caroline Nettekoven (C)

Western Institute for Neuroscience, Western University, London, ON, Canada. cr.nettekoven@gmail.com.
Department of Computer Science, Western University, London, ON, Canada. cr.nettekoven@gmail.com.

Da Zhi (D)

Western Institute for Neuroscience, Western University, London, ON, Canada.
Department of Computer Science, Western University, London, ON, Canada.

Ladan Shahshahani (L)

Western Institute for Neuroscience, Western University, London, ON, Canada.

Ana Luísa Pinho (AL)

Western Institute for Neuroscience, Western University, London, ON, Canada.
Department of Computer Science, Western University, London, ON, Canada.

Noam Saadon-Grosman (N)

Harvard University, Cambridge, USA.

Randy Lee Buckner (RL)

Harvard University, Cambridge, USA.

Jörn Diedrichsen (J)

Western Institute for Neuroscience, Western University, London, ON, Canada. jdiedric@uwo.ca.
Department of Computer Science, Western University, London, ON, Canada. jdiedric@uwo.ca.
Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada. jdiedric@uwo.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH