A hierarchical atlas of the human cerebellum for functional precision mapping.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Sep 2024
27 Sep 2024
Historique:
received:
27
02
2024
accepted:
30
08
2024
medline:
28
9
2024
pubmed:
28
9
2024
entrez:
27
9
2024
Statut:
epublish
Résumé
The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional atlas that integrates information from seven large-scale datasets, outperforming existing group atlases. The atlas has three further advantages. First, the atlas allows for precision mapping in individuals: the integration of the probabilistic group atlas with an individual localizer scan results in a marked improvement in prediction of individual boundaries. Second, we provide both asymmetric and symmetric versions of the atlas. The symmetric version, which is obtained by constraining the boundaries to be the same across hemispheres, is especially useful in studying functional lateralization. Finally, the regions are hierarchically organized across three levels, allowing analyses at the appropriate level of granularity. Overall, the present atlas is an important resource for the study of the interdigitated functional organization of the human cerebellum in health and disease.
Identifiants
pubmed: 39333089
doi: 10.1038/s41467-024-52371-w
pii: 10.1038/s41467-024-52371-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8376Subventions
Organisme : Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ID : RGPIN-2016-04890
Organisme : Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre (Skin Research Training Centre)
ID : PJT-507612
Informations de copyright
© 2024. The Author(s).
Références
Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).
pubmed: 19555291
doi: 10.1146/annurev.neuro.31.060407.125606
Schmahmann, J. D. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Nurse Pract. 16, 367–378 (2004).
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).
pubmed: 31285616
pmcid: 8312478
doi: 10.1038/s41593-019-0436-x
Schmahmann, J. D. et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10, 233–260 (1999).
pubmed: 10458940
doi: 10.1006/nimg.1999.0459
Diedrichsen, J., Balsters, J. H. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).
pubmed: 19457380
doi: 10.1016/j.neuroimage.2009.01.045
Ji, J. L. et al. Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185, 35–57 (2019).
pubmed: 30291974
doi: 10.1016/j.neuroimage.2018.10.006
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).
pubmed: 21795627
pmcid: 3214121
doi: 10.1152/jn.00339.2011
Zhi, D. et al. A hierarchical Bayesian brain parcellation framework for fusion of functional imaging datasets. bioRxiv https://doi.org/10.1101/2023.05.24.542121 (2023)
Bijsterbosch, J. et al. Challenges and future directions for representations of functional brain organization. Nat. Neurosci. 23, 1484–1495 (2020).
pubmed: 33106677
doi: 10.1038/s41593-020-00726-z
Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).
pubmed: 26212711
pmcid: 4642864
doi: 10.1016/j.neuron.2015.06.037
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).
pubmed: 28728026
pmcid: 5519493
doi: 10.1016/j.neuron.2017.06.038
Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 146, 918–939 (2017).
pubmed: 27640749
doi: 10.1016/j.neuroimage.2016.08.032
Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).
pubmed: 23395382
pmcid: 3746075
doi: 10.1016/j.neuron.2012.12.028
Marek, S. et al. Spatial and temporal organization of the individual human cerebellum. Neuron 100, 977–993 (2018).
pubmed: 30473014
pmcid: 6351081
doi: 10.1016/j.neuron.2018.10.010
Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 1, 358–384 (2020).
Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. cortex 29, 2533–2551 (2019).
pubmed: 29878084
doi: 10.1093/cercor/bhy123
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989).
pubmed: 23968463
doi: 10.1162/jocn.1989.1.2.153
Gaiser, C. et al. Large data on the small brain: Population-wide cerebellar growth models of children and adolescents. https://doi.org/10.1101/2023.04.26.538263 .(2023)
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).
pubmed: 24991964
pmcid: 4082806
doi: 10.1016/j.neuron.2014.05.014
Tavor, I. et al. Task-free MRI predicts individual differences in brain activity during task performance. Science 352, 216–220 (2016).
pubmed: 27124457
pmcid: 6309730
doi: 10.1126/science.aad8127
Saadon-Grosman, N., Angeli, P. A., DiNicola, L. M. & Buckner, R. L. A third somatomotor representation in the human cerebellum. J. Neurophysiol. 128, 1051–1073 (2022).
pubmed: 36130164
pmcid: 9576182
doi: 10.1152/jn.00165.2022
Zhi, D., King, M., Hernandez-Castillo, C. R. & Diedrichsen, J. Evaluating brain parcellations using the distance-controlled boundary coefficient. Hum. Brain Mapp. 43, 3706–3720 (2022).
pubmed: 35451538
pmcid: 9294308
doi: 10.1002/hbm.25878
van Es, D. M., van der Zwaag, W. & Knapen, T. Retinotopic maps of visual space in the human cerebellum. Curr. Biol. 29, 1689–1694.e3 (2019).
pubmed: 31080082
doi: 10.1016/j.cub.2019.04.012
Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).
pubmed: 32771330
pmcid: 7116395
doi: 10.1016/j.tics.2020.06.012
Assem, M., Shashidhara, S., Glasser, M. F. & Duncan, J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. bioRxiv https://doi.org/10.1101/2022.12.01.518720 (2022).
DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).
pubmed: 32049593
pmcid: 7099479
doi: 10.1152/jn.00529.2019
King, M., Shahshahani, L., Ivry, R. B. & Diedrichsen, J. A task-general connectivity model reveals variation in convergence of cortical inputs to functional regions of the cerebellum. eLife 12, e81511 (2023).
pubmed: 37083692
pmcid: 10129326
doi: 10.7554/eLife.81511
Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage https://doi.org/10.7551/mitpress/7570.003.0005 (2010)
Fedorenko, E., Hsieh, P. J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. https://doi.org/10.1152/jn.00032.2010 (2010)
Dodell-Feder, D., Koster-Hale, J., Bedny, M. & Saxe, R. fMRI item analysis in a theory of mind task. NeuroImage 55, 705–712 (2011).
pubmed: 21182967
doi: 10.1016/j.neuroimage.2010.12.040
Guell, X., Schmahmann, J. D., Gabrieli, J. D. & Ghosh, S. S. Functional gradients of the cerebellum. Elife 7, e36652 (2018).
pubmed: 30106371
pmcid: 6092123
doi: 10.7554/eLife.36652
Diedrichsen, J. & Zotow, E. Surface-based display of volume-averaged cerebellar imaging data. PloS one 10, e0133402 (2015).
pubmed: 26230510
pmcid: 4521932
doi: 10.1371/journal.pone.0133402
Sereno, M. I. et al. Proc. Nati Acad. Sci. USA 117, 19538–19543 (2020).
Stoodley, C. J., MacMore, J. P., Makris, N., Sherman, J. C. & Schmahmann, J. D. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage: Clin. 12, 765–775 (2016).
pubmed: 27812503
doi: 10.1016/j.nicl.2016.10.013
Schild, R. F. On the inferior olive of the albino rat. J. Compar. Neurol. https://doi.org/10.1002/cne.901400302 . (1970)
Sugihara, I., Wu, H. S. & Shinoda, Y. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J. Neurosci. https://doi.org/10.1523/jneurosci.21-19-07715.2001 (2001)
Biswas, M. S., Luo, Y., Sarpong, G. A. & Sugihara, I. Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J. Comp. Neurol. 527, 1966–1985 (2019).
pubmed: 30737986
doi: 10.1002/cne.24662
Mahowald, K. & Fedorenko, E. Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability. NeuroImage 139, 74–93 (2016).
pubmed: 27261158
doi: 10.1016/j.neuroimage.2016.05.073
Fedorenko, E., Ivanova, A. A. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-024-00802-4 (2024)
Van Overwalle, F. et al. The involvement of the posterior cerebellum in reconstructing and predicting social action sequences. Cerebellum 21, 733–741 (2022).
pubmed: 34694590
doi: 10.1007/s12311-021-01333-9
D’Mello, A. M., Turkeltaub, P. E. & Stoodley, C. J. Cerebellar tdcs modulates neural circuits during semantic prediction: a combined tDCS-fMRI study. J. Neurosci. 37, 1604–1613 (2017).
pubmed: 28069925
pmcid: 5299574
doi: 10.1523/JNEUROSCI.2818-16.2017
D’Mello, A. M., Gabrieli, J. D. E. & Nee, D. E. Evidence for hierarchical cognitive control in the human cerebellum. Curr. Biol. 30, 1881–1892.e3 (2020).
pubmed: 32275880
pmcid: 7289516
doi: 10.1016/j.cub.2020.03.028
Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020).
pubmed: 32965153
pmcid: 8356783
doi: 10.1152/jn.00753.2019
Bijsterbosch, J. D. et al. The relationship between spatial configuration and functional connectivity of brain regions. eLife 7, e32992 (2018).
pubmed: 29451491
pmcid: 5860869
doi: 10.7554/eLife.32992
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).
pubmed: 22658708
pmcid: 4120275
doi: 10.1016/j.biopsych.2012.04.028
Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78, 337–339 (2021).
pubmed: 33237320
doi: 10.1001/jamapsychiatry.2020.3794
Cash, R. F. H. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. https://doi.org/10.1016/j.biopsych.2018.12.002 (2019)
Nettekoven, C. et al. Cerebellar GABA change during visuomotor adaptation relates to adaptation performance and cerebellar network connectivity: a magnetic resonance spectroscopic imaging study. J. Neurosci. 42, JN-RM-0096–22 (2022).
Shahshahani, L., King, M., Nettekoven, C., Ivry, R. & Diedrichsen, J. Selective recruitment: evidence for task-dependent gating of inputs to the cerebellum. bioRxiv https://doi.org/10.1101/2023.01.25.525395 (2023).
Nakai, T. & Nishimoto, S. Quantitative models reveal the organization of diverse cognitive functions in the brain. Nat. Commun. 11, 1–12 (2020).
doi: 10.1038/s41467-020-14913-w
Pinho, A. L. et al. Individual brain charting, a high-resolution fMRI dataset for cognitive mapping. Sci. data 5, 1–15 (2018).
doi: 10.1038/sdata.2018.105
Pinho, A. L. et al. Individual brain charting dataset extension, second release of high-resolution fMRI data for cognitive mapping. Sci. Data 7, 353 (2020).
pubmed: 33067452
pmcid: 7567863
doi: 10.1038/s41597-020-00670-4
Van Essen, D. C. et al. The WU-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880
doi: 10.1016/j.neuroimage.2013.05.041
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415
doi: 10.1016/j.neuroimage.2013.05.039
Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).
pubmed: 22047963
doi: 10.1093/cercor/bhr291
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782–790 (2012).
pubmed: 21979382
doi: 10.1016/j.neuroimage.2011.09.015