A robust high-throughput screening system to assess bacterial tyrosine ammonia lyase activity in the context of tyrosine inherited metabolic disorders.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 11 04 2024
accepted: 06 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

Inborn errors of tyrosine metabolism result in patient's inability to degrade tyrosine. Current treatment consists of a phenylalanine and tyrosine restricted diet and nitisinone, causing a block in the tyrosine degradation pathway. However, tyrosine levels will increase, leading to acquired hypertyrosinemia, implying the need for an add-on treatment. Tyrosine ammonia lyases (TAL) can provide such an add-on treatment as they catalyze the deamination of tyrosine into p-coumaric acid and ammonia. In this study, we developed a robust high-throughput screening (HTS) assay to assess the capacity of bacterial TAL enzymes to decrease excessive tyrosine. The assay is based on the spectrophotometric quantification of p-coumaric acid after conversion of tyrosine by bacterial TAL. As a benchmark, TAL from Flavobacterium johnsoniae (FjTAL) was used to optimize the assay. Optimal growth conditions for high-level protein expression were determined by incubating transformed Escherichia coli BL21 (DE3) cells at different temperatures during various incubation times. Subsequently, assay temperature and pH were optimized followed by testing different ratios of tyrosine assay mixes to bacterial lysate. Finally, assay robustness and functionality were evaluated. Optimal FjTAL expression was obtained after incubation for 24 h at 22 °C. Ideal assay conditions consist of a 80/20 ratio of 1 mM tyrosine assay mix to FjTAL lysate performed at pH 9.2 and 37 °C. The robustness test showed Z' values > 0.4 and signal window values > 2 without edge or drift effects. As proof-of-principle, we successfully determined the catalytic activity of two other bacterial TAL enzymes RsTAL (5.718.10

Identifiants

pubmed: 39333684
doi: 10.1038/s41598-024-72360-9
pii: 10.1038/s41598-024-72360-9
doi:

Substances chimiques

Tyrosine 42HK56048U
Ammonia-Lyases EC 4.3.1.-
L-tyrosine ammonia-lyase EC 4.3.1.-
Bacterial Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22175

Subventions

Organisme : Fonds Wetenschappelijk Onderzoek
ID : G041521N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 11P1T24N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 11P3024N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : G041521N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : G041521N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : G041521N

Informations de copyright

© 2024. The Author(s).

Références

Ghadimi, H. Diagnosis of inborn errors of amino acid metabolism. Arch. Pediatr. Adolesc. Med. 114(4), 433. https://doi.org/10.1001/archpedi.1967.02090250131016 (1967).
doi: 10.1001/archpedi.1967.02090250131016
Chakrapani, A., Gissen, P. & McKiernan, P. Disorders of tyrosine metabolism. Inborn Metab. Dis. https://doi.org/10.1007/978-3-642-15720-2 (2012).
doi: 10.1007/978-3-642-15720-2
Holme, E. & Mitchell, G. A. Tyrosine Metabolism. Phys. Guide Diagnos. Treat. Follow-Up Inherit. Metab. Dis. https://doi.org/10.1007/978-3-642-40337-8 (2014).
doi: 10.1007/978-3-642-40337-8
Grompe, M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin. Liver Dis. 21(4), 563–572. https://doi.org/10.1055/s-2001-19035 (2001).
doi: 10.1055/s-2001-19035 pubmed: 11745044
Kvittingen, E. A. & Holme, E. Disorders of tyrosine metabolism. In Inborn metabolic diseases 186–194 (Springer, 2000).
doi: 10.1007/978-3-662-04285-4_15
Olsson, B. et al. Relationship between serum concentrations of nitisinone and its effect on homogentisic acid and tyrosine in patients with alkaptonuria. JIMD Rep. 24, 21–27. https://doi.org/10.1007/8904_2015_412 (2015).
doi: 10.1007/8904_2015_412 pubmed: 25772318 pmcid: 4582028
Davison, A. S. et al. Assessment of the effect of once daily nitisinone therapy on 24-h urinary metadrenalines and 5-hydroxyindole acetic acid excretion in patients with alkaptonuria after 4 weeks of treatment. J. Inherit. Metab. Dis. https://doi.org/10.1007/8904 (2017).
doi: 10.1007/8904 pubmed: 28980096 pmcid: 5786652
García, M. I., de la Parra, A., Arias, C., Arredondo, M. & Cabello, J. F. Long-term cognitive functioning in individuals with tyrosinemia type 1 treated with nitisinone and protein-restricted diet. Mol. Genet. Metab. Rep 11, 12–16. https://doi.org/10.1016/j.ymgmr.2017.01.016 (2017).
doi: 10.1016/j.ymgmr.2017.01.016 pubmed: 28377889 pmcid: 5369864
Scott, C. R. The genetic tyrosinemias. Am. J. Med. Genet. C Semin. Med. Genet. 126, 121–126. https://doi.org/10.1002/ajmg.c (2006).
doi: 10.1002/ajmg.c
Viola, R. E. The ammonia-lyases: Enzymes that use a wide range of approaches to catalyze the same type of reaction catalyze the same type of reaction. Crit. Rev. Biochem. Mol. Biol. https://doi.org/10.1080/10409238.2019.1708261 (2020).
doi: 10.1080/10409238.2019.1708261
Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and Therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. https://doi.org/10.1021/acs.chemrev.6b00824 (2018).
doi: 10.1021/acs.chemrev.6b00824 pubmed: 28497955
Thomas, J. et al. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab. 124(1), 27–38. https://doi.org/10.1016/j.ymgme.2018.03.006 (2018).
doi: 10.1016/j.ymgme.2018.03.006 pubmed: 29653686
Jendresen, C. B. et al. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81(13), 4458–4476. https://doi.org/10.1128/AEM.00405-15 (2015).
doi: 10.1128/AEM.00405-15 pubmed: 25911487 pmcid: 4475877
Cha, H., Lee, S., Lee, J. H. & Park, J. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2018.08.060 (2018).
doi: 10.1016/j.fct.2018.08.060 pubmed: 30149109
Akdemir, F. N. E., Albayrak, M., Çalik, M., Bayir, Y. & Gülçin, I. The protective effects of p -coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 5(18), 1–11. https://doi.org/10.3390/biomedicines5020018 (2017).
doi: 10.3390/biomedicines5020018
Barros, J. & Dixon, R. A. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 25(1), 66–79. https://doi.org/10.1016/j.tplants.2019.09.011 (2020).
doi: 10.1016/j.tplants.2019.09.011 pubmed: 31679994
Kyndt, J. A., Meyer, T. E., Cusanovich, M. A. & Van Beumen, J. J. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett. 512, 240–244. https://doi.org/10.1016/s0014-5793(02)02272-x (2002).
doi: 10.1016/s0014-5793(02)02272-x pubmed: 11852088
Nishiyama, Y. et al. Expression of bacterial tyrosine ammonia-lyase creates a novel p -coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta 232(1), 209–218. https://doi.org/10.1007/s00425-010-1166-1 (2010).
doi: 10.1007/s00425-010-1166-1 pubmed: 20396902
Hausmann, O. et al. Pegvaliase: Immunological profile and recommendations for the clinical management of hypersensitivity reactions in patients with phenylketonuria treated with this enzyme substitution therapy. Mol. Genet. Metab. 128(1–2), 84–91. https://doi.org/10.1016/j.ymgme.2019.05.006 (2019).
doi: 10.1016/j.ymgme.2019.05.006 pubmed: 31375398
Eudes, A. et al. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb. Cell. Fact. 12(1), 62. https://doi.org/10.1186/1475-2859-12-62 (2013).
doi: 10.1186/1475-2859-12-62 pubmed: 23806124 pmcid: 3716870
Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00172 (2014).
doi: 10.3389/fmicb.2014.00172 pubmed: 25071752 pmcid: 4085539
Gopal, G. J. & Kumar, A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 32(6), 419–425. https://doi.org/10.1007/s10930-013-9502-5 (2013).
doi: 10.1007/s10930-013-9502-5 pubmed: 23897421
Jia, B. & Jeon, C. O. High-throughput recombinant protein expression in Escherichia coli : Current status and future perspectives. Open Biol. 6(8), 160196. https://doi.org/10.1098/rsob.160196 (2016).
doi: 10.1098/rsob.160196 pubmed: 27581654 pmcid: 5008019
Elabscience, ‘Elabscience Tyrosine Ammonia-Lyase (TAL) Assay Kit’. Accessed: Apr. 09, 2024. [Online]. Available: https://www.elabscience.com/p-tyrosine_ammonia_lyase_tal_activity_assay_kit-529622.html
Abbexa, ‘Abbexa Tyrosine Ammonia-Lyase (TAL) Assay Kit’. Accessed: Apr. 09, 2024. [Online]. Available: https://www.abbexa.com/tyrosine-ammonia-lyase-tal-assay-kit
Virklund, A., Jendresen, C. B., Nielsen, A. T. & Woodley, J. M. Characterization of tyrosine ammonia lyases from Flavobacterium johnsonian and Herpetosiphon aurantiacus. Biotechnol. J. https://doi.org/10.1002/biot.202300111 (2023).
doi: 10.1002/biot.202300111 pubmed: 37486789
Brack, Y., Sun, C., Yi, D. & Bornscheuer, U. T. Discovery of novel tyrosine ammonia lyases for the enzymatic synthesis of p -coumaric acid. ChemBioChem https://doi.org/10.1002/cbic.202200062 (2022).
doi: 10.1002/cbic.202200062 pubmed: 35352477 pmcid: 9321829
P. W. Iversen et al., ‘HTS Assay Validation’, in Assay Guidance Manual, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/
S. Amirreza-Mousavi-Majd, Flavobacterium johnsoniae Tyrosine Ammonia Lyase (FjTAL) in-silico structure prediction and molecular docking to L-Tyrosine, p-Coumaric Acid (pHCA) and Caffeic Acid, (2022), https://doi.org/10.1101/2022.02.09.479702 .
Hughes, J. H. et al. Dietary restriction of tyrosine and phenylalanine lowers tyrosinemia associated with nitisinone therapy of alkaptonuria. J Inherit Metab Dis 43(2), 259–268. https://doi.org/10.1002/jimd.12172 (2020).
doi: 10.1002/jimd.12172 pubmed: 31503358 pmcid: 7079096
Schein, C. H. Production of soluble recombinant proteins in bacteria. Nat. Biotechnol. 7(11), 1141–1149. https://doi.org/10.1038/nbt1189-1141 (1989).
doi: 10.1038/nbt1189-1141
Baneyx, F. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10(5), 411–421. https://doi.org/10.1016/S0958-1669(99)00003-8 (1999).
doi: 10.1016/S0958-1669(99)00003-8 pubmed: 10508629
Papaneophytou, C. P. & Kontopidis, G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: A general review. Protein Expr. Purif. 94, 22–32. https://doi.org/10.1016/j.pep.2013.10.016 (2014).
doi: 10.1016/j.pep.2013.10.016 pubmed: 24211770
Shaw, M. K. & Ingraham, J. L. Synthesis of macromolecules by Escherichia coli near the minimal temperature for growth. J. Bacteriol. 94(1), 157–164. https://doi.org/10.1128/jb.94.1.157-164.1967 (1967).
doi: 10.1128/jb.94.1.157-164.1967 pubmed: 5338968 pmcid: 251884
Pinsach, J., de Mas, C., López-Santín, J., Striedner, G. & Bayer, K. Influence of process temperature on recombinant enzyme activity in Escherichia coli fed-batch cultures. Enzyme Microb. Technol. 43(7), 507–512. https://doi.org/10.1016/j.enzmictec.2008.08.007 (2008).
doi: 10.1016/j.enzmictec.2008.08.007
Noor, R., Islam, Z., Munshi, S. K. & Rahman, F. Influence of temperature on Escherichia coli growth in different culture media. J. Pure Appl. Microbiol. 7(2), 899–904 (2013).
Iversen, P. W., Eastwood, B. J., Sittampalam, G. S. & Cox, K. L. A comparison of assay performance measures in screening assays: Signal window, Z′ Factor, and assay variability ratio. SLAS Discov. 11(3), 247–252. https://doi.org/10.1177/1087057105285610 (2006).
doi: 10.1177/1087057105285610
Zhang, J.-H., Chung, T. D. Y. & Oldenburg, K. R. A Simple statistical parameter for use in evaluation and validation of high throughput screening assays. SLAS Discov. 4(2), 67–73. https://doi.org/10.1177/108705719900400206 (1999).
doi: 10.1177/108705719900400206
Wang, Y. et al. Directed evolution: Methodologies and applications. Chem. Rev. 121(20), 12384–12444. https://doi.org/10.1021/acs.chemrev.1c00260 (2021).
doi: 10.1021/acs.chemrev.1c00260 pubmed: 34297541
Cirino, P. C., Mayer, K. M. & Umeno, D. Generating Mutant Libraries Using Error-Prone PCR. In Directed Evolution Library Creation 3–10 (Humana Press, 2003).
doi: 10.1385/1-59259-395-X:3

Auteurs

Ine Nulmans (I)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium. ine.nulmans@vub.be.

Camille Annie Laga (CA)

Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Nina Stefanie Salvi (NS)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Liesbeth Desmet (L)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Sien Lequeue (S)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Jessie Neuckermans (J)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Ulrich Schwaneberg (U)

Lehrstuhl Für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.

Joery De Kock (J)

Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH