Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies.


Journal

Molecular medicine (Cambridge, Mass.)
ISSN: 1528-3658
Titre abrégé: Mol Med
Pays: England
ID NLM: 9501023

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 27 06 2024
accepted: 19 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.

Identifiants

pubmed: 39333854
doi: 10.1186/s10020-024-00939-z
pii: 10.1186/s10020-024-00939-z
doi:

Substances chimiques

Histones 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

161

Informations de copyright

© 2024. The Author(s).

Références

Ali HA, Li Y, Bilal AHM, Qin T, Yuan Z, Zhao W. A Comprehensive Review of BET Protein Biochemistry, physiology, and pathological roles. Front Pharmacol. 2022;13:818891.
pubmed: 35401196 doi: 10.3389/fphar.2022.818891 pmcid: 8990909
Avrahami D, Kaestner KH. The dynamic methylome of islets in health and disease. Mol Metab. 2019;27S(Suppl):S25–32.
pubmed: 31500828 doi: 10.1016/j.molmet.2019.06.007
Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, Wagner GS, Hansen HC, Chiacchia FS, Johansson J, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol. 2010;55(23):2580–9.
pubmed: 20513599 doi: 10.1016/j.jacc.2010.02.035
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int J Mol Sci 2021, 22(21).
Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of transposable elements in Genome Stability: implications for Health and Disease. Int J Mol Sci 2022, 23(14).
Biondi G, Marrano N, Borrelli A, Rella M, D’Oria R, Genchi VA, Caccioppoli C, Cignarelli A, Perrini S, Laviola L et al. The p66(shc) Redox Protein and the emerging complications of diabetes. Int J Mol Sci 2023, 25(1).
Borck PC, Guo LW, Plutzky J. BET Epigenetic Reader Proteins in Cardiovascular Transcriptional Programs. Circ Res. 2020;126(9):1190–208.
pubmed: 32324495 doi: 10.1161/CIRCRESAHA.120.315929 pmcid: 8111334
Breschi A, Gingeras TR, Guigo R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 2017;18(7):425–40.
pubmed: 28479595 doi: 10.1038/nrg.2017.19 pmcid: 6413734
Bridgeman SC, Ellison GC, Melton PE, Newsholme P, Mamotte CDS. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes Metab. 2018;20(7):1553–62.
pubmed: 29457866 doi: 10.1111/dom.13262
Brown JD, Lin CY, Duan Q, Griffin G, Federation A, Paranal RM, Bair S, Newton G, Lichtman A, Kung A, et al. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 2014;56(2):219–31.
pubmed: 25263595 doi: 10.1016/j.molcel.2014.08.024 pmcid: 4224636
Camara AS, Mascher M. Consistencies and contradictions in different polymer models of chromatin architecture. Comput Struct Biotechnol J. 2023;21:1084–91.
pubmed: 36789261 doi: 10.1016/j.csbj.2023.01.033 pmcid: 9900451
Cavalieri V. The Expanding Constellation of histone post-translational modifications in the Epigenetic Landscape. Genes (Basel) 2021, 12(10).
Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol. 2014;51:155–8.
pubmed: 24786298 doi: 10.1016/j.biocel.2014.04.014
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell. 2023;83(3):442–51.
pubmed: 36736311 doi: 10.1016/j.molcel.2023.01.010 pmcid: 10044466
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, et al. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol. 2023;118(1):48.
pubmed: 37938421 doi: 10.1007/s00395-023-01018-w pmcid: 10632287
Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res. 2010;107(12):1403–13.
pubmed: 21148447 doi: 10.1161/CIRCRESAHA.110.223552
Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018;39(47):4150–8.
pubmed: 29069341 doi: 10.1093/eurheartj/ehx568
Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–7.
pubmed: 19711245 doi: 10.1055/s-0029-1237423 pmcid: 2791696
Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002;3(3):224–9.
pubmed: 11882541 doi: 10.1093/embo-reports/kvf053 pmcid: 1084017
Ecker S, Pancaldi V, Valencia A, Beck S, Paul DS. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays 2018, 40(2).
Eelen G, de Zeeuw P, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 2015;116(7):1231–44.
pubmed: 25814684 doi: 10.1161/CIRCRESAHA.116.302855 pmcid: 4380230
El-Osta A, Wolffe AP. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr. 2000;9(1–2):63–75.
pubmed: 11097425
El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.
pubmed: 18809715 doi: 10.1084/jem.20081188 pmcid: 2556800
Elbere I, Silamikelis I, Ustinova M, Kalnina I, Zaharenko L, Peculis R, Konrade I, Ciuculete DM, Zhukovsky C, Gudra D, et al. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics. 2018;10(1):156.
pubmed: 30545422 doi: 10.1186/s13148-018-0593-x pmcid: 6293577
Epidemiology of Diabetes I, Complications Research G. Epidemiology of diabetes interventions and complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and complications Trial cohort. Diabetes Care. 1999;22(1):99–111.
doi: 10.2337/diacare.22.1.99
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol. 2013;91(3):213–20.
pubmed: 23537434 doi: 10.1139/cjpp-2012-0251
Galimov ER. The role of p66shc in oxidative stress and apoptosis. Acta Naturae. 2010;2(4):44–51.
pubmed: 22649663 doi: 10.32607/20758251-2010-2-4-44-51 pmcid: 3347587
Garmpi A, Damaskos C, Garmpis N, Kaminiotis VV, Georgakopoulou VE, Spandidos DA, Papalexis P, Diamantis E, Patsouras A, Kyriakos G, et al. Role of histone deacetylase inhibitors in diabetic cardiomyopathy in experimental models (review). Med Int (Lond). 2022;2(4):26.
pubmed: 36699507
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.
pubmed: 20431074 doi: 10.1161/CIRCRESAHA.110.217117 pmcid: 2877591
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.
pubmed: 21030723 doi: 10.1161/CIRCRESAHA.110.223545 pmcid: 2996922
Gilham D, Wasiak S, Tsujikawa LM, Halliday C, Norek K, Patel RG, Kulikowski E, Johansson J, Sweeney M, Wong NC, et al. RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis. 2016;247:48–57.
pubmed: 26868508 doi: 10.1016/j.atherosclerosis.2016.01.036
Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell. 2012;45(6):814–25.
pubmed: 22387027 doi: 10.1016/j.molcel.2012.01.017 pmcid: 3319272
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol. 2023;215:115732.
pubmed: 37541452 doi: 10.1016/j.bcp.2023.115732
Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol. 2020;57:75–81.
pubmed: 32619853 doi: 10.1016/j.cbpa.2020.04.020
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther. 2023;243:108354.
pubmed: 36739915 doi: 10.1016/j.pharmthera.2023.108354
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer. 2015;6(5–6):184–213.
pubmed: 26124919 doi: 10.18632/genesandcancer.65 pmcid: 4482241
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET family protein BRD4: an emerging actor in NFkappaB Signaling in inflammation and Cancer. Biomedicines 2018, 6(1).
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.
pubmed: 21576679 doi: 10.1161/CIRCULATIONAHA.110.956839 pmcid: 3107542
Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303–14.
pubmed: 19454234 doi: 10.1016/j.ab.2009.01.037
Hanssen NMJ, Kraakman MJ, Flynn MC, Nagareddy PR, Schalkwijk CG, Murphy AJ. Postprandial glucose spikes, an important contributor to Cardiovascular Disease in Diabetes? Front Cardiovasc Med. 2020;7:570553.
pubmed: 33195459 doi: 10.3389/fcvm.2020.570553 pmcid: 7530333
Impivaara O, Iisalo E, Aromaa A, Maatela J, Reunanen A. Overprescription and underprescription of digitalis. Acta Med Scand. 1986;219(5):455–60.
pubmed: 3739752 doi: 10.1111/j.0954-6820.1986.tb03339.x
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.
pubmed: 22641018 doi: 10.1038/nrg3230
Kalantar-Zadeh K, Schwartz GG, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kulikowski E, Lebioda K, Toth PP, Wong N, et al. Effect of apabetalone on Cardiovascular events in diabetes, CKD, and recent Acute Coronary Syndrome: results from the BETonMACE Randomized Controlled Trial. Clin J Am Soc Nephrol. 2021;16(5):705–16.
pubmed: 33906908 doi: 10.2215/CJN.16751020 pmcid: 8259488
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.
pubmed: 16403636 doi: 10.1016/j.tibs.2005.12.008
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev. 2021;41(1):223–45.
pubmed: 32926459 doi: 10.1002/med.21730
Lachin JM, Nathan DM, Group DER. Understanding metabolic memory: the prolonged influence of Glycemia during the Diabetes Control and complications Trial (DCCT) on future risks of complications during the study of the epidemiology of diabetes interventions and complications (EDIC). Diabetes Care. 2021;44(10):2216–24.
pubmed: 34548284 doi: 10.2337/dc20-3097 pmcid: 8929187
Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 2008;283(39):26771–81.
pubmed: 18650421 doi: 10.1074/jbc.M802800200 pmcid: 2546554
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152.
pubmed: 37037849 doi: 10.1038/s41392-023-01400-z pmcid: 10086073
Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–44.
pubmed: 30982733 doi: 10.1016/j.cmet.2019.03.009 pmcid: 6509280
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.
pubmed: 19829295 doi: 10.1038/nature08514 pmcid: 2857523
Liu R, Li L, Shao C, Cai H, Wang Z. The Impact of Diabetes on Vascular Disease: Progress from the Perspective of Epidemics and Treatments. J Diabetes Res 2022, 2022:1531289.
Lone A, Harris RA, Singh O, Betts DH, Cumming RC. p66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Sci Rep. 2018;8(1):17081.
pubmed: 30459314 doi: 10.1038/s41598-018-35114-y pmcid: 6244282
Lu Y, Wang W, Liu J, Xie M, Liu Q, Li S. Vascular complications of diabetes: a narrative review. Med (Baltim). 2023;102(40):e35285.
doi: 10.1097/MD.0000000000035285
Martin DI, Cropley JE, Suter CM. Epigenetics in disease: leader or follower? Epigenetics 2011, 6(7):843–848.
Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Guerrero-Mauvecin J, Goma-Garces E, Fernandez-Fernandez B, Carriazo S, Sanchez-Nino MD, Ramos AM, Ruiz-Ortega M et al. Epigenetic modifiers as potential therapeutic targets in Diabetic kidney disease. Int J Mol Sci 2020, 21(11).
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Luscher TF, Paneni F, Costantino S. Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 2021;34(15):1165–99.
pubmed: 32808539 doi: 10.1089/ars.2020.8040
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.
pubmed: 36596869 doi: 10.1038/s41580-022-00566-8 pmcid: 10213152
Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem. 2013;61:289–317.
pubmed: 23150256 doi: 10.1007/978-94-007-4525-4_13 pmcid: 6611551
Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Muller M, Bossen C, Diederichs S, Cornu TI, Cathomen T, Mussolino C. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 2018;46(9):4456–68.
pubmed: 29538770 doi: 10.1093/nar/gky171 pmcid: 5961145
Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl FA, Calderone V, et al. The BET Protein Inhibitor apabetalone rescues Diabetes-Induced impairment of angiogenic response by epigenetic regulation of Thrombospondin-1. Antioxid Redox Signal. 2022;36(10–12):667–84.
pubmed: 34913726 doi: 10.1089/ars.2021.0127
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022, 2022:7703520.
Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012;19(12):1218–27.
pubmed: 23211769 doi: 10.1038/nsmb.2436 pmcid: 3645987
Nakajima S, Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med. 2013;65:162–74.
pubmed: 23792277 doi: 10.1016/j.freeradbiomed.2013.06.020
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C et al. Complications Trial/Epidemiology of Diabetes I : Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005, 353(25):2643–2653.
Neele AE, Willemsen L, Chen HJ, Dzobo KE, de Winther MPJ. Targeting epigenetics as atherosclerosis treatment: an updated view. Curr Opin Lipidol. 2020;31(6):324–30.
pubmed: 33027226 doi: 10.1097/MOL.0000000000000711 pmcid: 7752220
Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl 2007(106):S49–53.
Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E, Ghisletti S, Natoli G. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152(1–2):157–71.
pubmed: 23332752 doi: 10.1016/j.cell.2012.12.018
Ouni M, Saussenthaler S, Eichelmann F, Jahnert M, Stadion M, Wittenbecher C, Ronn T, Zellner L, Gottmann P, Ling C, et al. Epigenetic changes in islets of Langerhans Preceding the Onset of Diabetes. Diabetes. 2020;69(11):2503–17.
pubmed: 32816961 doi: 10.2337/db20-0204 pmcid: 7576562
Padgham N. Epistaxis: anatomical and clinical correlates. J Laryngol Otol. 1990;104(4):308–11.
pubmed: 2370452 doi: 10.1017/S0022215100112563
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013a;34(31):2436–43.
pubmed: 23641007 doi: 10.1093/eurheartj/eht149 pmcid: 3743069
Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013b;230(2):191–7.
pubmed: 24075743 doi: 10.1016/j.atherosclerosis.2013.07.003
Paneni F, Volpe M, Luscher TF, Cosentino F. SIRT1, p66(shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013c;62(6):1800–7.
pubmed: 23704521 doi: 10.2337/db12-1648 pmcid: 3661615
Paneni F, Costantino S, Castello L, Battista R, Capretti G, Chiandotto S, D’Amario D, Scavone G, Villano A, Rustighi A, et al. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. Eur Heart J. 2015a;36(13):817–28.
pubmed: 24801072 doi: 10.1093/eurheartj/ehu179
Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet. 2015b;8(1):150–8.
pubmed: 25472959 doi: 10.1161/CIRCGENETICS.114.000671
Pedroso JAB, Ramos-Lobo AM, Donato J Jr. SOCS3 as a future target to treat metabolic disorders. Horm (Athens). 2019;18(2):127–36.
doi: 10.1007/s42000-018-0078-5
Perrone A, Giovino A, Benny J, Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev 2020, 2020:3818196.
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.
pubmed: 28430919 doi: 10.1093/eurheartj/ehx165
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barilla F. Epigenetic modifications and non-coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022, 23(9).
Prattichizzo F, de Candia P, De Nigris V, Nicolucci A, Ceriello A. Legacy effect of intensive glucose control on major adverse cardiovascular outcome: systematic review and meta-analyses of trials according to different scenarios. Metabolism. 2020;110:154308.
pubmed: 32628943 doi: 10.1016/j.metabol.2020.154308
Prattichizzo F, De Nigris V, Sabbatinelli J, Giuliani A, Castano C, Parrizas M, Crespo I, Grimaldi A, Baranzini N, Spiga R, et al. CD31(+) extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature Associated with Cardiovascular complications. Diabetes. 2021a;70(1):240–54.
pubmed: 33097483 doi: 10.2337/db20-0199
Prattichizzo F, Matacchione G, Giuliani A, Sabbatinelli J, Olivieri F, de Candia P, De Nigris V, Ceriello A. Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Theranostics. 2021b;11(3):1031–45.
pubmed: 33391519 doi: 10.7150/thno.51605 pmcid: 7738884
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75.
pubmed: 21163346 doi: 10.1016/j.freeradbiomed.2010.12.006
Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25(3):487–96.
pubmed: 15637306 doi: 10.1161/01.ATV.0000155325.41507.e0
Ray KK, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Sweeney M, et al. Effect of apabetalone added to standard therapy on major adverse Cardiovascular events in patients with recent Acute Coronary Syndrome and Type 2 diabetes: a Randomized Clinical Trial. JAMA. 2020;323(16):1565–73.
pubmed: 32219359 doi: 10.1001/jama.2020.3308 pmcid: 7101505
Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes. 2014;63(12):4249–61.
pubmed: 25008173 doi: 10.2337/db14-0298 pmcid: 4238007
Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, Gasecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis 2023, 10(8).
Ronn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, et al. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun. 2023;14(1):8040.
pubmed: 38086799 doi: 10.1038/s41467-023-43719-9 pmcid: 10716521
Santalo J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine. Clin Epigenetics. 2022;14(1):44.
pubmed: 35337378 doi: 10.1186/s13148-022-01263-1 pmcid: 8953972
Scisciola L, Rizzo MR, Cataldo V, Fontanella RA, Balestrieri ML, D’Onofrio N, Marfella R, Paolisso G, Barbieri M. Incretin drugs effect on epigenetic machinery: new potential therapeutic implications in preventing vascular diabetic complications. FASEB J. 2020;34(12):16489–503.
pubmed: 33090591 doi: 10.1096/fj.202000860RR
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol Biol Sci Med Sci. 2010;65(9):963–75.
doi: 10.1093/gerona/glq074
Serowik TC, Pantalone KM. The evolution of type 2 diabetes management: glycemic control and beyond with SGLT-2 inhibitors and GLP-1 receptor agonists. J Osteopath Med. 2024;124(3):127–35.
pubmed: 37921061 doi: 10.1515/jom-2023-0179
Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol. 2010;80(12):1853–9.
pubmed: 20599797 doi: 10.1016/j.bcp.2010.06.005
Soccio P, Moriondo G, Lacedonia D, Tondo P, Quarato CMI, Foschino Barbaro MP, Scioscia G. EVs-miRNA: the new molecular markers for chronic respiratory diseases. Life (Basel) 2022, 12(10).
Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, Dardano A, Taddei S, Ghiadoni L, Bruno RM. The effects of Dapagliflozin on systemic and renal vascular function display an epigenetic signature. J Clin Endocrinol Metab. 2019;104(10):4253–63.
pubmed: 31162549 doi: 10.1210/jc.2019-00706
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.
pubmed: 33353982 doi: 10.1038/s41580-020-00315-9
Sun S, Barreiro LB. The epigenetically-encoded memory of the innate immune system. Curr Opin Immunol. 2020;65:7–13.
pubmed: 32220702 doi: 10.1016/j.coi.2020.02.002 pmcid: 7529637
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther. 2018;36(4):e12436.
pubmed: 29797660 doi: 10.1111/1755-5922.12436
The relationship of. Glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44(8):968–83.
doi: 10.2337/diab.44.8.968
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. Biochim Biophys Acta. 2014;1839(12):1416–32.
pubmed: 24859458 doi: 10.1016/j.bbagrm.2014.05.009
Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18(9):525–39.
pubmed: 35668219 doi: 10.1038/s41574-022-00690-7 pmcid: 9169030
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 2015;35:68–75.
pubmed: 26496625 doi: 10.1016/j.sbi.2015.09.007 pmcid: 4688207
Tronick E, Hunter RG. Waddington, Dynamic systems, and Epigenetics. Front Behav Neurosci. 2016;10:107.
pubmed: 27375447 doi: 10.3389/fnbeh.2016.00107 pmcid: 4901045
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics. 2019;11(1):102.
pubmed: 31300040 doi: 10.1186/s13148-019-0696-z pmcid: 6626370
Ueda J, Yamazaki T, Funakoshi H. Toward the development of Epigenome editing-based therapeutics: potentials and challenges. Int J Mol Sci 2023, 24(5).
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of histone deacetylases and inhibitors in Anticancer Therapy. Cancers (Basel) 2020, 12(6).
Vigorelli V, Resta J, Bianchessi V, Lauri A, Bassetti B, Agrifoglio M, Pesce M, Polvani G, Bonalumi G, Cavallotti L, et al. Abnormal DNA methylation Induced by Hyperglycemia reduces CXCR 4 gene expression in CD 34(+) stem cells. J Am Heart Assoc. 2019;8(9):e010012.
pubmed: 31018749 doi: 10.1161/JAHA.118.010012 pmcid: 6512087
Vinci MC, Costantino S, Damiano G, Rurali E, Rinaldi R, Vigorelli V, Sforza A, Carulli E, Pirola S, Mastroiacovo G, et al. Persistent epigenetic signals propel a senescence-associated secretory phenotype and trained innate immunity in CD34(+) hematopoietic stem cells from diabetic patients. Cardiovasc Diabetol. 2024;23(1):107.
pubmed: 38553774 doi: 10.1186/s12933-024-02195-1 pmcid: 10981360
Waddington CH, CANALIZATION OF DEVELOPMENT AND THE INHERITANCE OF ACQUIRED CHARACTERS. Nature. 1942;150(3811):563–5.
doi: 10.1038/150563a0
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, Cai L. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014;2014:641979.
pubmed: 24693336 doi: 10.1155/2014/641979 pmcid: 3945289
Wang X, Pan Y, Zhu H, Hao G, Huang Y, Barnes V, Shi H, Snieder H, Pankow J, North K, et al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics. 2018;10:3.
pubmed: 29312471 doi: 10.1186/s13148-017-0435-2 pmcid: 5756368
Wang C, Chen B, Feng Q, Nie C, Li T. Clinical perspectives and concerns of metformin as an anti-aging drug. Aging Med (Milton). 2020;3(4):266–75.
pubmed: 33392433 doi: 10.1002/agm2.12135
Wasiak S, Gilham D, Tsujikawa LM, Halliday C, Calosing C, Jahagirdar R, Johansson J, Sweeney M, Wong NC, Kulikowski E. Downregulation of the complement Cascade in Vitro, in mice and in patients with Cardiovascular Disease by the BET Protein Inhibitor apabetalone (RVX-208). J Cardiovasc Transl Res. 2017;10(4):337–47.
pubmed: 28567671 doi: 10.1007/s12265-017-9755-z pmcid: 5585290
Wasiak S, Dzobo KE, Rakai BD, Kaiser Y, Versloot M, Bahjat M, Stotz SC, Fu L, Sweeney M, Johansson JO, et al. BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics. 2020;12(1):166.
pubmed: 33172487 doi: 10.1186/s13148-020-00943-0 pmcid: 7657365
Yang Q, Wang G, Fang D, Gao X, Liang Y, Wang L, Wu J, Zeng M, Luo M. The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother. 2022;151:113130.
pubmed: 35598373 doi: 10.1016/j.biopha.2022.113130
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry. 2011;50(12):1966–80.
pubmed: 21288002 doi: 10.1021/bi101885m
Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramirez-Ruz J, Gomez A, Goncalves I, Moran S, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700.
pubmed: 25091541 doi: 10.1161/CIRCGENETICS.113.000441
Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their Integrated Networks. J Integr Bioinform 2019;16(3).
Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109(6):639–48.
pubmed: 21778425 doi: 10.1161/CIRCRESAHA.111.243592

Auteurs

Giulia Damiano (G)

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.

Raffaella Rinaldi (R)

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.

Angela Raucci (A)

Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy.

Chiara Molinari (C)

Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy.

Annalisa Sforza (A)

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.

Sergio Pirola (S)

Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy.

Francesco Paneni (F)

Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland.
University Heart Center, University Hospital Zurich, Zurich, Switzerland.

Stefano Genovese (S)

Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy.

Giulio Pompilio (G)

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy.

Maria Cristina Vinci (MC)

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy. cristina.vinci@cardiologicomonzino.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH