Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies.
Cardiovascular complications
Diabetes
Epidrugs GLP-1RA
Epigenetics
Journal
Molecular medicine (Cambridge, Mass.)
ISSN: 1528-3658
Titre abrégé: Mol Med
Pays: England
ID NLM: 9501023
Informations de publication
Date de publication:
27 Sep 2024
27 Sep 2024
Historique:
received:
27
06
2024
accepted:
19
09
2024
medline:
28
9
2024
pubmed:
28
9
2024
entrez:
28
9
2024
Statut:
epublish
Résumé
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Identifiants
pubmed: 39333854
doi: 10.1186/s10020-024-00939-z
pii: 10.1186/s10020-024-00939-z
doi:
Substances chimiques
Histones
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
161Informations de copyright
© 2024. The Author(s).
Références
Ali HA, Li Y, Bilal AHM, Qin T, Yuan Z, Zhao W. A Comprehensive Review of BET Protein Biochemistry, physiology, and pathological roles. Front Pharmacol. 2022;13:818891.
pubmed: 35401196
doi: 10.3389/fphar.2022.818891
pmcid: 8990909
Avrahami D, Kaestner KH. The dynamic methylome of islets in health and disease. Mol Metab. 2019;27S(Suppl):S25–32.
pubmed: 31500828
doi: 10.1016/j.molmet.2019.06.007
Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, Wagner GS, Hansen HC, Chiacchia FS, Johansson J, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol. 2010;55(23):2580–9.
pubmed: 20513599
doi: 10.1016/j.jacc.2010.02.035
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int J Mol Sci 2021, 22(21).
Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of transposable elements in Genome Stability: implications for Health and Disease. Int J Mol Sci 2022, 23(14).
Biondi G, Marrano N, Borrelli A, Rella M, D’Oria R, Genchi VA, Caccioppoli C, Cignarelli A, Perrini S, Laviola L et al. The p66(shc) Redox Protein and the emerging complications of diabetes. Int J Mol Sci 2023, 25(1).
Borck PC, Guo LW, Plutzky J. BET Epigenetic Reader Proteins in Cardiovascular Transcriptional Programs. Circ Res. 2020;126(9):1190–208.
pubmed: 32324495
doi: 10.1161/CIRCRESAHA.120.315929
pmcid: 8111334
Breschi A, Gingeras TR, Guigo R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 2017;18(7):425–40.
pubmed: 28479595
doi: 10.1038/nrg.2017.19
pmcid: 6413734
Bridgeman SC, Ellison GC, Melton PE, Newsholme P, Mamotte CDS. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes Metab. 2018;20(7):1553–62.
pubmed: 29457866
doi: 10.1111/dom.13262
Brown JD, Lin CY, Duan Q, Griffin G, Federation A, Paranal RM, Bair S, Newton G, Lichtman A, Kung A, et al. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 2014;56(2):219–31.
pubmed: 25263595
doi: 10.1016/j.molcel.2014.08.024
pmcid: 4224636
Camara AS, Mascher M. Consistencies and contradictions in different polymer models of chromatin architecture. Comput Struct Biotechnol J. 2023;21:1084–91.
pubmed: 36789261
doi: 10.1016/j.csbj.2023.01.033
pmcid: 9900451
Cavalieri V. The Expanding Constellation of histone post-translational modifications in the Epigenetic Landscape. Genes (Basel) 2021, 12(10).
Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol. 2014;51:155–8.
pubmed: 24786298
doi: 10.1016/j.biocel.2014.04.014
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell. 2023;83(3):442–51.
pubmed: 36736311
doi: 10.1016/j.molcel.2023.01.010
pmcid: 10044466
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, et al. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol. 2023;118(1):48.
pubmed: 37938421
doi: 10.1007/s00395-023-01018-w
pmcid: 10632287
Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res. 2010;107(12):1403–13.
pubmed: 21148447
doi: 10.1161/CIRCRESAHA.110.223552
Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J. 2018;39(47):4150–8.
pubmed: 29069341
doi: 10.1093/eurheartj/ehx568
Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–7.
pubmed: 19711245
doi: 10.1055/s-0029-1237423
pmcid: 2791696
Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002;3(3):224–9.
pubmed: 11882541
doi: 10.1093/embo-reports/kvf053
pmcid: 1084017
Ecker S, Pancaldi V, Valencia A, Beck S, Paul DS. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays 2018, 40(2).
Eelen G, de Zeeuw P, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 2015;116(7):1231–44.
pubmed: 25814684
doi: 10.1161/CIRCRESAHA.116.302855
pmcid: 4380230
El-Osta A, Wolffe AP. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr. 2000;9(1–2):63–75.
pubmed: 11097425
El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.
pubmed: 18809715
doi: 10.1084/jem.20081188
pmcid: 2556800
Elbere I, Silamikelis I, Ustinova M, Kalnina I, Zaharenko L, Peculis R, Konrade I, Ciuculete DM, Zhukovsky C, Gudra D, et al. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics. 2018;10(1):156.
pubmed: 30545422
doi: 10.1186/s13148-018-0593-x
pmcid: 6293577
Epidemiology of Diabetes I, Complications Research G. Epidemiology of diabetes interventions and complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and complications Trial cohort. Diabetes Care. 1999;22(1):99–111.
doi: 10.2337/diacare.22.1.99
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol. 2013;91(3):213–20.
pubmed: 23537434
doi: 10.1139/cjpp-2012-0251
Galimov ER. The role of p66shc in oxidative stress and apoptosis. Acta Naturae. 2010;2(4):44–51.
pubmed: 22649663
doi: 10.32607/20758251-2010-2-4-44-51
pmcid: 3347587
Garmpi A, Damaskos C, Garmpis N, Kaminiotis VV, Georgakopoulou VE, Spandidos DA, Papalexis P, Diamantis E, Patsouras A, Kyriakos G, et al. Role of histone deacetylase inhibitors in diabetic cardiomyopathy in experimental models (review). Med Int (Lond). 2022;2(4):26.
pubmed: 36699507
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.
pubmed: 20431074
doi: 10.1161/CIRCRESAHA.110.217117
pmcid: 2877591
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.
pubmed: 21030723
doi: 10.1161/CIRCRESAHA.110.223545
pmcid: 2996922
Gilham D, Wasiak S, Tsujikawa LM, Halliday C, Norek K, Patel RG, Kulikowski E, Johansson J, Sweeney M, Wong NC, et al. RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis. 2016;247:48–57.
pubmed: 26868508
doi: 10.1016/j.atherosclerosis.2016.01.036
Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell. 2012;45(6):814–25.
pubmed: 22387027
doi: 10.1016/j.molcel.2012.01.017
pmcid: 3319272
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol. 2023;215:115732.
pubmed: 37541452
doi: 10.1016/j.bcp.2023.115732
Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol. 2020;57:75–81.
pubmed: 32619853
doi: 10.1016/j.cbpa.2020.04.020
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther. 2023;243:108354.
pubmed: 36739915
doi: 10.1016/j.pharmthera.2023.108354
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer. 2015;6(5–6):184–213.
pubmed: 26124919
doi: 10.18632/genesandcancer.65
pmcid: 4482241
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET family protein BRD4: an emerging actor in NFkappaB Signaling in inflammation and Cancer. Biomedicines 2018, 6(1).
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.
pubmed: 21576679
doi: 10.1161/CIRCULATIONAHA.110.956839
pmcid: 3107542
Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303–14.
pubmed: 19454234
doi: 10.1016/j.ab.2009.01.037
Hanssen NMJ, Kraakman MJ, Flynn MC, Nagareddy PR, Schalkwijk CG, Murphy AJ. Postprandial glucose spikes, an important contributor to Cardiovascular Disease in Diabetes? Front Cardiovasc Med. 2020;7:570553.
pubmed: 33195459
doi: 10.3389/fcvm.2020.570553
pmcid: 7530333
Impivaara O, Iisalo E, Aromaa A, Maatela J, Reunanen A. Overprescription and underprescription of digitalis. Acta Med Scand. 1986;219(5):455–60.
pubmed: 3739752
doi: 10.1111/j.0954-6820.1986.tb03339.x
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.
pubmed: 22641018
doi: 10.1038/nrg3230
Kalantar-Zadeh K, Schwartz GG, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kulikowski E, Lebioda K, Toth PP, Wong N, et al. Effect of apabetalone on Cardiovascular events in diabetes, CKD, and recent Acute Coronary Syndrome: results from the BETonMACE Randomized Controlled Trial. Clin J Am Soc Nephrol. 2021;16(5):705–16.
pubmed: 33906908
doi: 10.2215/CJN.16751020
pmcid: 8259488
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.
pubmed: 16403636
doi: 10.1016/j.tibs.2005.12.008
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev. 2021;41(1):223–45.
pubmed: 32926459
doi: 10.1002/med.21730
Lachin JM, Nathan DM, Group DER. Understanding metabolic memory: the prolonged influence of Glycemia during the Diabetes Control and complications Trial (DCCT) on future risks of complications during the study of the epidemiology of diabetes interventions and complications (EDIC). Diabetes Care. 2021;44(10):2216–24.
pubmed: 34548284
doi: 10.2337/dc20-3097
pmcid: 8929187
Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 2008;283(39):26771–81.
pubmed: 18650421
doi: 10.1074/jbc.M802800200
pmcid: 2546554
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152.
pubmed: 37037849
doi: 10.1038/s41392-023-01400-z
pmcid: 10086073
Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–44.
pubmed: 30982733
doi: 10.1016/j.cmet.2019.03.009
pmcid: 6509280
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.
pubmed: 19829295
doi: 10.1038/nature08514
pmcid: 2857523
Liu R, Li L, Shao C, Cai H, Wang Z. The Impact of Diabetes on Vascular Disease: Progress from the Perspective of Epidemics and Treatments. J Diabetes Res 2022, 2022:1531289.
Lone A, Harris RA, Singh O, Betts DH, Cumming RC. p66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Sci Rep. 2018;8(1):17081.
pubmed: 30459314
doi: 10.1038/s41598-018-35114-y
pmcid: 6244282
Lu Y, Wang W, Liu J, Xie M, Liu Q, Li S. Vascular complications of diabetes: a narrative review. Med (Baltim). 2023;102(40):e35285.
doi: 10.1097/MD.0000000000035285
Martin DI, Cropley JE, Suter CM. Epigenetics in disease: leader or follower? Epigenetics 2011, 6(7):843–848.
Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Guerrero-Mauvecin J, Goma-Garces E, Fernandez-Fernandez B, Carriazo S, Sanchez-Nino MD, Ramos AM, Ruiz-Ortega M et al. Epigenetic modifiers as potential therapeutic targets in Diabetic kidney disease. Int J Mol Sci 2020, 21(11).
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Luscher TF, Paneni F, Costantino S. Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 2021;34(15):1165–99.
pubmed: 32808539
doi: 10.1089/ars.2020.8040
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.
pubmed: 36596869
doi: 10.1038/s41580-022-00566-8
pmcid: 10213152
Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem. 2013;61:289–317.
pubmed: 23150256
doi: 10.1007/978-94-007-4525-4_13
pmcid: 6611551
Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Muller M, Bossen C, Diederichs S, Cornu TI, Cathomen T, Mussolino C. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 2018;46(9):4456–68.
pubmed: 29538770
doi: 10.1093/nar/gky171
pmcid: 5961145
Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl FA, Calderone V, et al. The BET Protein Inhibitor apabetalone rescues Diabetes-Induced impairment of angiogenic response by epigenetic regulation of Thrombospondin-1. Antioxid Redox Signal. 2022;36(10–12):667–84.
pubmed: 34913726
doi: 10.1089/ars.2021.0127
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022, 2022:7703520.
Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012;19(12):1218–27.
pubmed: 23211769
doi: 10.1038/nsmb.2436
pmcid: 3645987
Nakajima S, Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med. 2013;65:162–74.
pubmed: 23792277
doi: 10.1016/j.freeradbiomed.2013.06.020
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C et al. Complications Trial/Epidemiology of Diabetes I : Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005, 353(25):2643–2653.
Neele AE, Willemsen L, Chen HJ, Dzobo KE, de Winther MPJ. Targeting epigenetics as atherosclerosis treatment: an updated view. Curr Opin Lipidol. 2020;31(6):324–30.
pubmed: 33027226
doi: 10.1097/MOL.0000000000000711
pmcid: 7752220
Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl 2007(106):S49–53.
Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E, Ghisletti S, Natoli G. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152(1–2):157–71.
pubmed: 23332752
doi: 10.1016/j.cell.2012.12.018
Ouni M, Saussenthaler S, Eichelmann F, Jahnert M, Stadion M, Wittenbecher C, Ronn T, Zellner L, Gottmann P, Ling C, et al. Epigenetic changes in islets of Langerhans Preceding the Onset of Diabetes. Diabetes. 2020;69(11):2503–17.
pubmed: 32816961
doi: 10.2337/db20-0204
pmcid: 7576562
Padgham N. Epistaxis: anatomical and clinical correlates. J Laryngol Otol. 1990;104(4):308–11.
pubmed: 2370452
doi: 10.1017/S0022215100112563
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013a;34(31):2436–43.
pubmed: 23641007
doi: 10.1093/eurheartj/eht149
pmcid: 3743069
Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013b;230(2):191–7.
pubmed: 24075743
doi: 10.1016/j.atherosclerosis.2013.07.003
Paneni F, Volpe M, Luscher TF, Cosentino F. SIRT1, p66(shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013c;62(6):1800–7.
pubmed: 23704521
doi: 10.2337/db12-1648
pmcid: 3661615
Paneni F, Costantino S, Castello L, Battista R, Capretti G, Chiandotto S, D’Amario D, Scavone G, Villano A, Rustighi A, et al. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. Eur Heart J. 2015a;36(13):817–28.
pubmed: 24801072
doi: 10.1093/eurheartj/ehu179
Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet. 2015b;8(1):150–8.
pubmed: 25472959
doi: 10.1161/CIRCGENETICS.114.000671
Pedroso JAB, Ramos-Lobo AM, Donato J Jr. SOCS3 as a future target to treat metabolic disorders. Horm (Athens). 2019;18(2):127–36.
doi: 10.1007/s42000-018-0078-5
Perrone A, Giovino A, Benny J, Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev 2020, 2020:3818196.
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.
pubmed: 28430919
doi: 10.1093/eurheartj/ehx165
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barilla F. Epigenetic modifications and non-coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022, 23(9).
Prattichizzo F, de Candia P, De Nigris V, Nicolucci A, Ceriello A. Legacy effect of intensive glucose control on major adverse cardiovascular outcome: systematic review and meta-analyses of trials according to different scenarios. Metabolism. 2020;110:154308.
pubmed: 32628943
doi: 10.1016/j.metabol.2020.154308
Prattichizzo F, De Nigris V, Sabbatinelli J, Giuliani A, Castano C, Parrizas M, Crespo I, Grimaldi A, Baranzini N, Spiga R, et al. CD31(+) extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature Associated with Cardiovascular complications. Diabetes. 2021a;70(1):240–54.
pubmed: 33097483
doi: 10.2337/db20-0199
Prattichizzo F, Matacchione G, Giuliani A, Sabbatinelli J, Olivieri F, de Candia P, De Nigris V, Ceriello A. Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Theranostics. 2021b;11(3):1031–45.
pubmed: 33391519
doi: 10.7150/thno.51605
pmcid: 7738884
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75.
pubmed: 21163346
doi: 10.1016/j.freeradbiomed.2010.12.006
Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25(3):487–96.
pubmed: 15637306
doi: 10.1161/01.ATV.0000155325.41507.e0
Ray KK, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Sweeney M, et al. Effect of apabetalone added to standard therapy on major adverse Cardiovascular events in patients with recent Acute Coronary Syndrome and Type 2 diabetes: a Randomized Clinical Trial. JAMA. 2020;323(16):1565–73.
pubmed: 32219359
doi: 10.1001/jama.2020.3308
pmcid: 7101505
Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes. 2014;63(12):4249–61.
pubmed: 25008173
doi: 10.2337/db14-0298
pmcid: 4238007
Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, Gasecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis 2023, 10(8).
Ronn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, et al. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun. 2023;14(1):8040.
pubmed: 38086799
doi: 10.1038/s41467-023-43719-9
pmcid: 10716521
Santalo J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine. Clin Epigenetics. 2022;14(1):44.
pubmed: 35337378
doi: 10.1186/s13148-022-01263-1
pmcid: 8953972
Scisciola L, Rizzo MR, Cataldo V, Fontanella RA, Balestrieri ML, D’Onofrio N, Marfella R, Paolisso G, Barbieri M. Incretin drugs effect on epigenetic machinery: new potential therapeutic implications in preventing vascular diabetic complications. FASEB J. 2020;34(12):16489–503.
pubmed: 33090591
doi: 10.1096/fj.202000860RR
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol Biol Sci Med Sci. 2010;65(9):963–75.
doi: 10.1093/gerona/glq074
Serowik TC, Pantalone KM. The evolution of type 2 diabetes management: glycemic control and beyond with SGLT-2 inhibitors and GLP-1 receptor agonists. J Osteopath Med. 2024;124(3):127–35.
pubmed: 37921061
doi: 10.1515/jom-2023-0179
Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol. 2010;80(12):1853–9.
pubmed: 20599797
doi: 10.1016/j.bcp.2010.06.005
Soccio P, Moriondo G, Lacedonia D, Tondo P, Quarato CMI, Foschino Barbaro MP, Scioscia G. EVs-miRNA: the new molecular markers for chronic respiratory diseases. Life (Basel) 2022, 12(10).
Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, Dardano A, Taddei S, Ghiadoni L, Bruno RM. The effects of Dapagliflozin on systemic and renal vascular function display an epigenetic signature. J Clin Endocrinol Metab. 2019;104(10):4253–63.
pubmed: 31162549
doi: 10.1210/jc.2019-00706
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.
pubmed: 33353982
doi: 10.1038/s41580-020-00315-9
Sun S, Barreiro LB. The epigenetically-encoded memory of the innate immune system. Curr Opin Immunol. 2020;65:7–13.
pubmed: 32220702
doi: 10.1016/j.coi.2020.02.002
pmcid: 7529637
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther. 2018;36(4):e12436.
pubmed: 29797660
doi: 10.1111/1755-5922.12436
The relationship of. Glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44(8):968–83.
doi: 10.2337/diab.44.8.968
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. Biochim Biophys Acta. 2014;1839(12):1416–32.
pubmed: 24859458
doi: 10.1016/j.bbagrm.2014.05.009
Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18(9):525–39.
pubmed: 35668219
doi: 10.1038/s41574-022-00690-7
pmcid: 9169030
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 2015;35:68–75.
pubmed: 26496625
doi: 10.1016/j.sbi.2015.09.007
pmcid: 4688207
Tronick E, Hunter RG. Waddington, Dynamic systems, and Epigenetics. Front Behav Neurosci. 2016;10:107.
pubmed: 27375447
doi: 10.3389/fnbeh.2016.00107
pmcid: 4901045
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics. 2019;11(1):102.
pubmed: 31300040
doi: 10.1186/s13148-019-0696-z
pmcid: 6626370
Ueda J, Yamazaki T, Funakoshi H. Toward the development of Epigenome editing-based therapeutics: potentials and challenges. Int J Mol Sci 2023, 24(5).
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of histone deacetylases and inhibitors in Anticancer Therapy. Cancers (Basel) 2020, 12(6).
Vigorelli V, Resta J, Bianchessi V, Lauri A, Bassetti B, Agrifoglio M, Pesce M, Polvani G, Bonalumi G, Cavallotti L, et al. Abnormal DNA methylation Induced by Hyperglycemia reduces CXCR 4 gene expression in CD 34(+) stem cells. J Am Heart Assoc. 2019;8(9):e010012.
pubmed: 31018749
doi: 10.1161/JAHA.118.010012
pmcid: 6512087
Vinci MC, Costantino S, Damiano G, Rurali E, Rinaldi R, Vigorelli V, Sforza A, Carulli E, Pirola S, Mastroiacovo G, et al. Persistent epigenetic signals propel a senescence-associated secretory phenotype and trained innate immunity in CD34(+) hematopoietic stem cells from diabetic patients. Cardiovasc Diabetol. 2024;23(1):107.
pubmed: 38553774
doi: 10.1186/s12933-024-02195-1
pmcid: 10981360
Waddington CH, CANALIZATION OF DEVELOPMENT AND THE INHERITANCE OF ACQUIRED CHARACTERS. Nature. 1942;150(3811):563–5.
doi: 10.1038/150563a0
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, Cai L. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014;2014:641979.
pubmed: 24693336
doi: 10.1155/2014/641979
pmcid: 3945289
Wang X, Pan Y, Zhu H, Hao G, Huang Y, Barnes V, Shi H, Snieder H, Pankow J, North K, et al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics. 2018;10:3.
pubmed: 29312471
doi: 10.1186/s13148-017-0435-2
pmcid: 5756368
Wang C, Chen B, Feng Q, Nie C, Li T. Clinical perspectives and concerns of metformin as an anti-aging drug. Aging Med (Milton). 2020;3(4):266–75.
pubmed: 33392433
doi: 10.1002/agm2.12135
Wasiak S, Gilham D, Tsujikawa LM, Halliday C, Calosing C, Jahagirdar R, Johansson J, Sweeney M, Wong NC, Kulikowski E. Downregulation of the complement Cascade in Vitro, in mice and in patients with Cardiovascular Disease by the BET Protein Inhibitor apabetalone (RVX-208). J Cardiovasc Transl Res. 2017;10(4):337–47.
pubmed: 28567671
doi: 10.1007/s12265-017-9755-z
pmcid: 5585290
Wasiak S, Dzobo KE, Rakai BD, Kaiser Y, Versloot M, Bahjat M, Stotz SC, Fu L, Sweeney M, Johansson JO, et al. BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics. 2020;12(1):166.
pubmed: 33172487
doi: 10.1186/s13148-020-00943-0
pmcid: 7657365
Yang Q, Wang G, Fang D, Gao X, Liang Y, Wang L, Wu J, Zeng M, Luo M. The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother. 2022;151:113130.
pubmed: 35598373
doi: 10.1016/j.biopha.2022.113130
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry. 2011;50(12):1966–80.
pubmed: 21288002
doi: 10.1021/bi101885m
Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramirez-Ruz J, Gomez A, Goncalves I, Moran S, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700.
pubmed: 25091541
doi: 10.1161/CIRCGENETICS.113.000441
Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their Integrated Networks. J Integr Bioinform 2019;16(3).
Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109(6):639–48.
pubmed: 21778425
doi: 10.1161/CIRCRESAHA.111.243592