Federated systems for automated infection surveillance: a perspective.

Automated surveillance Ethical Legal Societal Implications Federated systems Governance Healthcare associated infections Implementation Interoperability Severe acute respiratory infections Standards

Journal

Antimicrobial resistance and infection control
ISSN: 2047-2994
Titre abrégé: Antimicrob Resist Infect Control
Pays: England
ID NLM: 101585411

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 29 05 2024
accepted: 08 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

Automation of surveillance of infectious diseases-where algorithms are applied to routine care data to replace manual decisions-likely reduces workload and improves quality of surveillance. However, various barriers limit large-scale implementation of automated surveillance (AS). Current implementation strategies for AS in surveillance networks include central implementation (i.e. collecting all data centrally, and central algorithm application for case ascertainment) or local implementation (i.e. local algorithm application and sharing surveillance results with the network coordinating center). In this perspective, we explore whether current challenges can be solved by federated AS. In federated AS, scripts for analyses are developed centrally and applied locally. We focus on the potential of federated AS in the context of healthcare associated infections (AS-HAI) and of severe acute respiratory illness (AS-SARI). AS-HAI and AS-SARI have common and specific requirements, but both would benefit from decreased local surveillance burden, alignment of AS and increased central and local oversight, and improved access to data while preserving privacy. Federated AS combines some benefits of a centrally implemented system, such as standardization and alignment of an easily scalable methodology, with some of the benefits of a locally implemented system including (near) real-time access to data and flexibility in algorithms, meeting different information needs and improving sustainability, and allowance of a broader range of clinically relevant case-definitions. From a global perspective, it can promote the development of automated surveillance where it is not currently possible and foster international collaboration.The necessary transformation of source data likely will place a significant burden on healthcare facilities. However, this may be outweighed by the potential benefits: improved comparability of surveillance results, flexibility and reuse of data for multiple purposes. Governance and stakeholder agreement to address accuracy, accountability, transparency, digital literacy, and data protection, warrants clear attention to create acceptance of the methodology. In conclusion, federated automated surveillance seems a potential solution for current barriers of large-scale implementation of AS-HAI and AS-SARI. Prerequisites for successful implementation include validation of results and evaluation requirements of network participants to govern understanding and acceptance of the methodology.

Identifiants

pubmed: 39334278
doi: 10.1186/s13756-024-01464-8
pii: 10.1186/s13756-024-01464-8
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

113

Informations de copyright

© 2024. The Author(s).

Références

Centers for Disease Control and Prevention (CDC). Introduction to Public Health Surveillance [Available from: https://www.cdc.gov/training/publichealth101/surveillance.html Accessed April 26, 2024.
World Health Organization. Surveillance [Available from: https://www.who.int/emergencies/surveillance . Accessed 07 Apr 2024.
Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, et al. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017;6:6. https://doi.org/10.1186/s13756-016-0149-9 .
doi: 10.1186/s13756-016-0149-9 pubmed: 28078082 pmcid: 5223492
Price L, MacDonald J, Melone L, Howe T, Flowers P, Currie K, et al. Effectiveness of national and subnational infection prevention and control interventions in high-income and upper-middle-income countries: a systematic review. Lancet Infect Dis. 2018;18(5):e159–71. https://doi.org/10.1016/S1473-3099(17)30479-6 .
doi: 10.1016/S1473-3099(17)30479-6 pubmed: 29100898
Suetens C, Latour K, Karki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018. https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516 .
doi: 10.2807/1560-7917.ES.2018.23.46.1800516 pubmed: 30458917 pmcid: 6247463
World Health Organization. Global report on infection prevention and control. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. World Health Organization; 2022.
Tomczyk S, Twyman A, de Kraker MEA, Coutinho Rehse AP, Tartari E, Toledo JP, et al. The first WHO global survey on infection prevention and control in health-care facilities. Lancet Infect Dis. 2022;22(6):845–56. https://doi.org/10.1016/S1473-3099(21)00809-4 .
doi: 10.1016/S1473-3099(21)00809-4 pubmed: 35202599 pmcid: 9132775
Rosenthal VD, Yin R, Nercelles P, Rivera-Molina SE, Jyoti S, Dongol R, et al. International nosocomial infection control consortium (INICC) report of health care associated infections, data summary of 45 countries for 2015 to 2020, adult and pediatric units, device-associated module. Am J Infect Control. 2024;52(9):1002–11. https://doi.org/10.1016/j.ajic.2023.12.019 .
doi: 10.1016/j.ajic.2023.12.019 pubmed: 38185380
Fakih MG, Bufalino A, Sturm L, Huang RH, Ottenbacher A, Saake K, et al. Coronavirus disease 2019 (COVID-19) pandemic, central-line-associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI): The urgent need to refocus on hardwiring prevention efforts. Infect Control Hosp Epidemiol. 2022;43(1):26–31. https://doi.org/10.1017/ice.2021.70 .
doi: 10.1017/ice.2021.70 pubmed: 33602361
Pelat C, Bonmarin I, Ruello M, Fouillet A, Caserio-Schonemann C, Levy-Bruhl D, et al. Improving regional influenza surveillance through a combination of automated outbreak detection methods: the 2015/16 season in France. Euro Surveill. 2017. https://doi.org/10.2807/1560-7917.ES.2017.22.32.30593 .
doi: 10.2807/1560-7917.ES.2017.22.32.30593 pubmed: 28816649 pmcid: 6373610
van’t Klooster TM, Wielders CC, Donker T, Isken L, Meijer A, van den Wijngaard CC, et al. Surveillance of hospitalisations for 2009 pandemic influenza A(H1N1) in the Netherlands 5 June - 31 December 2009. Euro Surveill. 2010. https://doi.org/10.2807/ese.15.02.19461-en .
doi: 10.2807/ese.15.02.19461-en pubmed: 20144446
Gupta S, Gupta T, Gupta N. Global respiratory virus surveillance: strengths, gaps, and way forward. Int J Infect Dis. 2022;121:184–9. https://doi.org/10.1016/j.ijid.2022.05.032 .
doi: 10.1016/j.ijid.2022.05.032 pubmed: 35584744 pmcid: 9107382
Birgand G, Lepelletier D, Baron G, Barrett S, Breier AC, Buke C, et al. Agreement among healthcare professionals in ten European countries in diagnosing case-vignettes of surgical-site infections. PLoS ONE. 2013;8(7): e68618. https://doi.org/10.1371/journal.pone.0068618 .
doi: 10.1371/journal.pone.0068618 pubmed: 23874690 pmcid: 3706413
Mitchell BGH, Halton K, MacBeth D, Gardner A. Time spent by infection control professionals undertaking healthcare associated infection surveillance: A multi-centred cross sectional study. Infect, Dis Health. 2016;21(1):36–40. https://doi.org/10.1016/j.idh.2016.03.003 .
doi: 10.1016/j.idh.2016.03.003
Shenoy ES, Branch-Elliman W. Automating surveillance for healthcare-associated infections: rationale and current realities (Part I/III). Antimicrob Steward Healthc Epidemiol. 2023;3(1): e25. https://doi.org/10.1017/ash.2022.312 .
doi: 10.1017/ash.2022.312 pubmed: 36865706 pmcid: 9972536
Sips ME, Bonten MJM, van Mourik MSM. Automated surveillance of healthcare-associated infections: state of the art. Curr Opin Infect Dis. 2017;30(4):425–31. https://doi.org/10.1097/QCO.0000000000000376 .
doi: 10.1097/QCO.0000000000000376 pubmed: 28505027
Lin MY, Woeltje KF, Khan YM, Hota B, Doherty JA, Borlawsky TB, et al. Multicenter evaluation of computer automated versus traditional surveillance of hospital-acquired bloodstream infections. Infect Control Hosp Epidemiol. 2014;35(12):1483–90. https://doi.org/10.1086/678602 .
doi: 10.1086/678602 pubmed: 25419770 pmcid: 8385404
Verberk JDM, van der Kooi TII, Hetem DJ, Oostdam N, Noordergraaf M, de Greeff SC, et al. Semiautomated surveillance of deep surgical site infections after colorectal surgeries: a multicenter external validation of two surveillance algorithms. Infect Control Hosp Epidemiol. 2023;44(4):616–23. https://doi.org/10.1017/ice.2022.147 .
doi: 10.1017/ice.2022.147 pubmed: 35726554
Statens Serum Institut. Healthcare-Associated Infections Database (HAIBA) [Available from: https://miba.ssi.dk/overvaagningssystemer/haiba . Accessed April 26, 2024.
Picard J, Nkoumazok B, Arnaud I, Verjat-Trannoy D, Astagneau P. Comorbidities directly extracted from the hospital database for adjusting SSI risk in the new national semiautomated surveillance system in France: The SPICMI network. Infect Control Hosp Epidemiol. 2023. https://doi.org/10.1017/ice.2023.123 .
doi: 10.1017/ice.2023.123 pubmed: 37529839
van Mourik MSM, Perencevich EN, Gastmeier P, Bonten MJM. Designing surveillance of healthcare-associated infections in the era of automation and reporting mandates. Clin Infect Dis. 2018;66(6):970–6. https://doi.org/10.1093/cid/cix835 .
doi: 10.1093/cid/cix835 pubmed: 29514241
van Mourik MSM, van Rooden SM, Abbas M, Aspevall O, Astagneau P, Bonten MJM, et al. PRAISE: providing a roadmap for automated infection surveillance in Europe. Clin Microbiol Infect. 2021;27(Suppl 1):S3–19. https://doi.org/10.1016/j.cmi.2021.02.028 .
doi: 10.1016/j.cmi.2021.02.028 pubmed: 34217466
National Healthcare Safety Network (NHSN) CDC. Ventilator-associated Events (VAE) [Available from: https://www.cdc.gov/nhsn/psc/vae/index.html . Accessed 26 Apr 2024.
World Health Organization. Surveillance case definitions for ILI and SARI [Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/case-definitions-for-ili-and-sari#:~:text=SARI%20case%20definition,within%20the%20last%2010%20days . Accessed 26 Apr 2024
Cauchi JP, Borg ML, Dziugyte A, Attard J, Melillo T, Zahra G, et al. Digitalizing and upgrading severe acute respiratory infections surveillance in Malta: system development. JMIR Public Health Surveill. 2022;8(12): e37669. https://doi.org/10.2196/37669 .
doi: 10.2196/37669 pubmed: 36227157 pmcid: 9764153
Dutch National Institute for Public Health and the Environment (RIVM). PREZIES Automatisering Surveillance: POWI ORTHOpedie (PAS ORTHO) [Available from: https://www.rivm.nl/prezies/pas-ortho . Accessed 27 Nov 2023
Buda S, Tolksdorf K, Schuler E, Kuhlen R, Haas W. Establishing an ICD-10 code based SARI-surveillance in Germany—description of the system and first results from five recent influenza seasons. BMC Public Health. 2017;17(1):612. https://doi.org/10.1186/s12889-017-4515-1 .
doi: 10.1186/s12889-017-4515-1 pubmed: 28666433 pmcid: 5493063
Torres AR, Gomez V, Kislaya I, Rodrigues AP, Fernandes Tavares M, Pereira AC, et al. Monitoring COVID-19 and influenza: the added value of a severe acute respiratory infection surveillance system in Portugal. Can J Infect Dis Med Microbiol. 2023;2023:6590011. https://doi.org/10.1155/2023/6590011 .
doi: 10.1155/2023/6590011 pubmed: 36846348 pmcid: 9950323
Wells J, Young JJ, Harvey C, Mutch H, McPhail D, Young N, et al. Real-time surveillance of severe acute respiratory infections in Scottish hospitals: an electronic register-based approach, 2017–2022. Public Health. 2022;213:5–11. https://doi.org/10.1016/j.puhe.2022.09.003 .
doi: 10.1016/j.puhe.2022.09.003 pubmed: 36306639
Whittaker R, Toikkanen S, Dean K, Lyngstad TM, Buanes EA, Klovstad H, et al. A comparison of two registry-based systems for the surveillance of persons hospitalised with COVID-19 in Norway, February 2020 to May 2022. Euro Surveill. 2023. https://doi.org/10.2807/1560-7917.ES.2023.28.33.2200888 .
doi: 10.2807/1560-7917.ES.2023.28.33.2200888 pubmed: 37676146 pmcid: 10486193
van Rooden SM, Tacconelli E, Pujol M, Gomila A, Kluytmans J, Romme J, et al. A framework to develop semiautomated surveillance of surgical site infections: an international multicenter study. Infect Control Hosp Epidemiol. 2020;41(2):194–201. https://doi.org/10.1017/ice.2019.321 .
doi: 10.1017/ice.2019.321 pubmed: 31884977
Brady M, Duffy R, Domegan L, Salmon A, Maharjan B, O’Broin C, et al. Establishing severe acute respiratory infection (SARI) surveillance in a sentinel hospital, Ireland, 2021 to 2022. Euro Surveill. 2023. https://doi.org/10.2807/1560-7917.ES.2023.28.23.2200740 .
doi: 10.2807/1560-7917.ES.2023.28.23.2200740 pubmed: 37289427 pmcid: 10318943
Fischer N, Dauby N, Bossuyt N, Reynders M, Gerard M, Lacor P, et al. Monitoring of human coronaviruses in Belgian primary care and hospitals, 2015–20: a surveillance study. Lancet Microbe. 2021;2(3):e105–14. https://doi.org/10.1016/S2666-5247(20)30221-4 .
doi: 10.1016/S2666-5247(20)30221-4 pubmed: 33937883 pmcid: 8064766
General Data Protection Regulation. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679.
Patient Safety Surveillance Solutions (P3S) [Available from: https://www.p3s.se/problem-solution . Accessed 26 Aug 2024.
Grüttner P. Opening the door for digital transformation in hospitals: IT expert’s point of view. In: Glauner P, Plugmann P, Lerzynski G, editors. Digitalization in healthcare: implementing innovation and artificial intelligence. Cham: Springer International Publishing; 2021. p. 29–42.
doi: 10.1007/978-3-030-65896-0_3
Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. NPJ Digit Med. 2019;2:79. https://doi.org/10.1038/s41746-019-0158-1 .
doi: 10.1038/s41746-019-0158-1 pubmed: 31453374 pmcid: 6702215
Gansel X, Mary M, van Belkum A. Semantic data interoperability, digital medicine, and e-health in infectious disease management: a review. Eur J Clin Microbiol Infect Dis. 2019;38(6):1023–34. https://doi.org/10.1007/s10096-019-03501-6 .
doi: 10.1007/s10096-019-03501-6 pubmed: 30771124
SNOMED International. Available from: https://www.snomed.org/ . Accessed 26 Apr 2024
LOINC. Available from: https://loinc.org/ . Accessed 26 Apr 2024
Norwegian Institute for Public Health, WHO Collaborating Centre for Drug Statistics Methodology. International language for drug utilization research [Available from: https://atcddd.fhi.no/ . Accessed 26 Apr 2024
World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. Available from: https://icd.who.int/browse10/2019/en . Accessed 26 Apr 2024
Rinaldi E, Stellmach C, Rajkumar NMR, Caroccia N, Dellacasa C, Giannella M, et al. Harmonization and standardization of data for a pan-European cohort on SARS- CoV-2 pandemic. NPJ Digit Med. 2022;5(1):75. https://doi.org/10.1038/s41746-022-00620-x .
doi: 10.1038/s41746-022-00620-x pubmed: 35701537 pmcid: 9198067
Dellacasa C, Ortali M, Rossi E, Abu Attieh H, Osmo T, Puskaric M, et al. An innovative technological infrastructure for managing SARS-CoV-2 data across different cohorts in compliance with general data protection regulation. Digit Health. 2024;10:20552076241248920. https://doi.org/10.1177/20552076241248922 .
doi: 10.1177/20552076241248922 pubmed: 38766364 pmcid: 11100396
Gomez G, Hufstedler H, Montenegro Morales C, Roell Y, Lozano-Parra A, Tami A, et al. Pooled cohort profile: ReCoDID Consortium’s harmonized acute febrile illness arbovirus meta-cohort. JMIR Public Health Surveill. 2024;10: e54281. https://doi.org/10.2196/54281 .
doi: 10.2196/54281 pubmed: 39042429 pmcid: 11288473
Stellmach C, Hopff SM, Jaenisch T, Nunes de Miranda SM, Rinaldi E, Napkon LO, ReCo DIDWG. Creation of standardized common data elements for diagnostic tests in infectious disease studies: semantic and syntactic mapping. J Med Internet Res. 2024;26: e50049. https://doi.org/10.2196/50049 .
doi: 10.2196/50049 pubmed: 38857066 pmcid: 11196918
Health Level Seven International (HL7). [Available from: https://www.hl7.org/ . Accessed 26 Apr 2024.
Health Level Seven International (HL7). HL7 FHIR Specification [Available from: https://hl7.org/fhir/directory.html . Accessed 26 Apr 2024.
Rinaldi E, Drenkhahn C, Gebel B, Saleh K, Tonnies H, von Loewenich FD, et al. Towards interoperability in infection control: a standard data model for microbiology. Sci Data. 2023;10(1):654. https://doi.org/10.1038/s41597-023-02560-x .
doi: 10.1038/s41597-023-02560-x pubmed: 37741862 pmcid: 10517923
Hagel S, Gantner J, Spreckelsen C, Fischer C, Ammon D, Saleh K, et al. Hospital-wide electronic medical record evaluated computerised decision support system to improve outcomes of Patients with staphylococcal bloodstream infection (HELP): study protocol for a multicentre stepped-wedge cluster randomised trial. BMJ Open. 2020;10(2): e033391. https://doi.org/10.1136/bmjopen-2019-033391 .
doi: 10.1136/bmjopen-2019-033391 pubmed: 32047014 pmcid: 7044885
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3: 160018. https://doi.org/10.1038/sdata.2016.18 .
doi: 10.1038/sdata.2016.18 pubmed: 26978244 pmcid: 4792175
Prokosch HU, Gebhardt M, Gruendner J, Kleinert P, Buckow K, Rosenau L, Semler SC. Towards a national portal for medical research data (FDPG): vision, status, and lessons learned. Stud Health Technol Inform. 2023;302:307–11. https://doi.org/10.3233/SHTI230124 .
doi: 10.3233/SHTI230124 pubmed: 37203668
Martinez-Costa C, Abad-Navarro F. Towards a semantic data harmonization federated infrastructure. Stud Health Technol Inform. 2021;281:38–42. https://doi.org/10.3233/SHTI210116 .
doi: 10.3233/SHTI210116 pubmed: 34042701
Behnke M, Valik JK, Gubbels S, Teixeira D, Kristensen B, Abbas M, et al. Information technology aspects of large-scale implementation of automated surveillance of healthcare-associated infections. Clin Microbiol Infect. 2021;27(Suppl 1):S29–39. https://doi.org/10.1016/j.cmi.2021.02.027 .
doi: 10.1016/j.cmi.2021.02.027 pubmed: 34217465
Raab R, Kuderle A, Zakreuskaya A, Stern AD, Klucken J, Kaissis G, et al. Federated electronic health records for the European Health Data Space. Lancet Digit Health. 2023;5(11):e840–7. https://doi.org/10.1016/S2589-7500(23)00156-5 .
doi: 10.1016/S2589-7500(23)00156-5 pubmed: 37741765
Podda E. Shedding light on the legal approach to aggregate data under the GDPR & the FFDR. CONFERENCE OF EUROPEAN STATISTICIANS; Expert Meeting on Statistical Data Confidentiality; 2021–12–1. Poland2021. https://unece.org/sites/default/files/2021-12/SDC2021_Day1_Podda_AD.pdf.
European Commision. Principles of the GDPR [Available from: https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr_en . Accessed 26 Apr 2024.
Maurya JP, S. Privacy Preservation in Federated Learning: its Attacks and Defenses. 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN); Salem India. 2023. https://doi.org/10.1109/ICPCSN58827.2023.00177
Lo SK, Liu Y, Qinghua L, Wang C, Xiwei X, Paik H-Y, Zhu L. Toward trustworthy AI: blockchain-based architecture design for accountability and fairness of federated learning systems. IEEE Internet Things J. 2023;10(4):3276–84. https://doi.org/10.1109/JIOT.2022.3144450 .
doi: 10.1109/JIOT.2022.3144450
European Artificial Intelligence Act, P9_TA(2024)0138 (2024). https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html.
European Union Automated decision-making processes: Ensuring consumer protection, and free movement of goods and services; European Parliament resolution of 12 February 2020 on automated decision-making processes: ensuring consumer protection and free movement of goods and services (2019/2915(RSP)) 2021 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020IP0032.
Bezemer T, de Groot MC, Blasse E, Ten Berg MJ, Kappen TH, Bredenoord AL, et al. A human(e) factor in clinical decision support systems. J Med Internet Res. 2019;21(3): e11732. https://doi.org/10.2196/11732 .
doi: 10.2196/11732 pubmed: 30888324 pmcid: 6444220
van Reisen M, Oladipo F, Stokmans M, Mpezamihgo M, Folorunso S, Schultes E, et al. Design of a FAIR digital data health infrastructure in Africa for COVID-19 reporting and research. Adv Genet (Hoboken). 2021;2(2): e10050. https://doi.org/10.1002/ggn2.10050 .
doi: 10.1002/ggn2.10050 pubmed: 34514430
Kerasidou CX, Kerasidou A, Buscher M, Wilkinson S. Before and beyond trust: reliance in medical AI. J Med Ethics. 2022;48(11):852–6. https://doi.org/10.1136/medethics-2020-107095 .
doi: 10.1136/medethics-2020-107095 pubmed: 34426519
World Health Organization. Defining collaborative surveillance: a core concept for strengthening the global architecture for health emergency preparedness, response, and resilience (HEPR). Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.: World Health Organization; 2023.
Corbucci L, Guidotti R, Monreale A. Explaining black-boxes in federated learning. In: Longo L, editor. Explainable artificial intelligence: first world conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part II. Cham: Springer Nature Switzerland; 2023. p. 151–63. https://doi.org/10.1007/978-3-031-44067-0_8 .
doi: 10.1007/978-3-031-44067-0_8
European Parliamentary Research Service (STOA) SFU How the General Data Protection Regulation changes the rules for scientific research 2019 https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634447/EPRS_STU(2019)634447(ANN1)_EN.pdf.
van Reisen M, Amare SY, Nalugala R, Taye GT, Gebreselassie TG, Medhanyie AA, Schultes E, Mpezamihigo M. Federated FAIR principles: Ownership, localisation and regulatory compliance (OLR). FAIR Connect. 2023;1(1):63–9. https://doi.org/10.3233/FC-230506 .
doi: 10.3233/FC-230506
Pan W, Xu Z, Rajendran S, Wang F. An adaptive federated learning framework for clinical risk prediction with electronic health records from multiple hospitals. Patterns (N Y). 2024;5(1): 100898. https://doi.org/10.1016/j.patter.2023.100898 .
doi: 10.1016/j.patter.2023.100898 pubmed: 38264713
Rajendran S, Xu Z, Pan W, Ghosh A, Wang F. Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care. PLOS Digit Health. 2023;2(3): e0000117. https://doi.org/10.1371/journal.pdig.0000117 .
doi: 10.1371/journal.pdig.0000117 pubmed: 36920974 pmcid: 10016691
Li W, Tong J, Anjum MM, Mohammed N, Chen Y, Jiang X. Federated learning algorithms for generalized mixed-effects model (GLMM) on horizontally partitioned data from distributed sources. BMC Med Inform Decis Mak. 2022;22(1):269. https://doi.org/10.1186/s12911-022-02014-1 .
doi: 10.1186/s12911-022-02014-1 pubmed: 36244993 pmcid: 9569919
Zhu H, Zhang H, Jin Y. From federated learning to federated neural architecture search: a survey. Complex Intell Syst. 2021;7:639–57. https://doi.org/10.1007/s40747-020-00247-z .
doi: 10.1007/s40747-020-00247-z
Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy;2 017. pp. 3–18. https://doi.org/10.1109/SP.2017.41 .
Hand D. Trustworthiness of Statistical Inference. J R Stat Soc A Stat Soc. 2022;185(1):329–47. https://doi.org/10.1111/rssa.12752 .
doi: 10.1111/rssa.12752
World Health Organization. “Crafting the mosaic”a framework for resilient surveillance for respiratory viruses of epidemic and pandemic potential. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO. World Health Organization; 2023.
Aghdassi SJS, Goodarzi H, Gropmann A, Clausmeyer J, Geffers C, Piening B, et al. Surgical site infection surveillance in German hospitals: a national survey to determine the status quo of digitalization. Antimicrob Resist Infect Control. 2023;12(1):49. https://doi.org/10.1186/s13756-023-01253-9 .
doi: 10.1186/s13756-023-01253-9 pubmed: 37208780 pmcid: 10197484
European Commission Recommendation on a European Electronic Health Record exchange format 2019 https://digital-strategy.ec.europa.eu/en/library/recommendation-european-electronic-health-record-exchange-format.
European Parliament Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the European Health Data Space 2022 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197.
Karamagi HC, Muneene D, Droti B, Jepchumba V, Okeibunor JC, Nabyonga J, et al. eHealth or e-Chaos: the use of digital health interventions for health systems strengthening in Sub-Saharan Africa over the last 10 years: a scoping review. J Glob Health. 2022;12:04090. https://doi.org/10.7189/jogh.12.04090 .
doi: 10.7189/jogh.12.04090 pubmed: 36462201 pmcid: 9718445
Kozlakidis Z, Abduljawad J, Al Khathaami AM, Schaper L, Stelling J. Global health and data-driven policies for emergency responses to infectious disease outbreaks. Lancet Glob Health. 2020;8(11):e1361–3. https://doi.org/10.1016/S2214-109X(20)30361-2 .
doi: 10.1016/S2214-109X(20)30361-2 pubmed: 32791118 pmcid: 7417143

Auteurs

Stephanie M van Rooden (SM)

Department of Epidemiology and Surveillance, Centre for Infectious Disease Epidemiology and Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. stephanie.van.rooden@rivm.nl.

Suzanne D van der Werff (SD)

Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
Department of Infectious Diseases, Karolinska University Healthcare Facility, Stockholm, Sweden.

Maaike S M van Mourik (MSM)

Department of Medical Microbiology and Infection Control, University Medical Centre Utrecht, Utrecht, The Netherlands.

Frederikke Lomholt (F)

Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.

Karina Lauenborg Møller (KL)

Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.

Sarah Valk (S)

Department of Epidemiology and Surveillance, Centre for Infectious Disease Epidemiology and Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Carolina Dos Santos Ribeiro (C)

Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Albert Wong (A)

Department of Statistics Data Science en Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Saskia Haitjema (S)

Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands.

Michael Behnke (M)

Institute of Hygiene and Environmental Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and, Berlin Institute of Health, Berlin, Germany.
National Reference Center for the Surveillance of Nosocomial Infections, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Eugenia Rinaldi (E)

Core Unit Digital Medicine and Interoperability, Berlin, Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH