Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells.
Chimeric antigen receptor T (CAR-T) cells
Induced-apoptosis
Mesenchymal stromal/stem cells
Mitochondria transfer
Journal
Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741
Informations de publication
Date de publication:
27 Sep 2024
27 Sep 2024
Historique:
received:
12
02
2024
accepted:
14
08
2024
medline:
28
9
2024
pubmed:
28
9
2024
entrez:
28
9
2024
Statut:
epublish
Résumé
Apoptosis, a form of programmed cell death, is critical for the development and homeostasis of the immune system. Chimeric antigen receptor T (CAR-T) cell therapy, approved for hematologic cancers, retains several limitations and challenges associated with ex vivo manipulation, including CAR T-cell susceptibility to apoptosis. Therefore, strategies to improve T-cell survival and persistence are required. Mesenchymal stem/stromal cells (MSCs) exhibit immunoregulatory and tissue-restoring potential. We have previously shown that the transfer of umbilical cord MSC (UC-MSC)-derived mitochondrial (MitoT) prompts the genetic reprogramming of CD3 We used a cell-free approach using artificial MitoT (Mitoception) of UC-MSC derived MT to peripheral blood mononuclear cells (PBMCs) followed by RNA-seq analysis of CD3 Gene expression related to apoptosis, cell death and/or responses to different stimuli was modified in CD3 Artificial MitoT prevents STS-induced apoptosis of human CD3
Sections du résumé
BACKGROUND
BACKGROUND
Apoptosis, a form of programmed cell death, is critical for the development and homeostasis of the immune system. Chimeric antigen receptor T (CAR-T) cell therapy, approved for hematologic cancers, retains several limitations and challenges associated with ex vivo manipulation, including CAR T-cell susceptibility to apoptosis. Therefore, strategies to improve T-cell survival and persistence are required. Mesenchymal stem/stromal cells (MSCs) exhibit immunoregulatory and tissue-restoring potential. We have previously shown that the transfer of umbilical cord MSC (UC-MSC)-derived mitochondrial (MitoT) prompts the genetic reprogramming of CD3
METHODS
METHODS
We used a cell-free approach using artificial MitoT (Mitoception) of UC-MSC derived MT to peripheral blood mononuclear cells (PBMCs) followed by RNA-seq analysis of CD3
RESULTS
RESULTS
Gene expression related to apoptosis, cell death and/or responses to different stimuli was modified in CD3
CONCLUSIONS
CONCLUSIONS
Artificial MitoT prevents STS-induced apoptosis of human CD3
Identifiants
pubmed: 39334383
doi: 10.1186/s12967-024-05627-4
pii: 10.1186/s12967-024-05627-4
doi:
Substances chimiques
Receptors, Chimeric Antigen
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
868Subventions
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : Fondecyt Regular 1211749
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : FONDECYT Iniciación 11240539
Organisme : Basal Funding for Scientific and Technological Center of Excellence
ID : FB210024
Informations de copyright
© 2024. The Author(s).
Références
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.
pubmed: 18073771
doi: 10.1038/nrm2312
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.
pubmed: 30655609
pmcid: 7325303
doi: 10.1038/s41580-018-0089-8
Opferman JT. Apoptosis in the development of the immune system. Cell Death Differ. 2008;15:234–42.
pubmed: 17571082
doi: 10.1038/sj.cdd.4402182
Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell. 2002;109(Suppl):S97–107.
pubmed: 11983156
doi: 10.1016/S0092-8674(02)00704-3
Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;27:2749–67.
pubmed: 32346136
pmcid: 7492225
doi: 10.1038/s41418-020-0540-1
Salvioli S, Capri M, Scarcella E, Mangherini S, Faranca I, Volterra V, et al. Age-dependent changes in the susceptibility to apoptosis of peripheral blood CD4+ and CD8+ T lymphocytes with virgin or memory phenotype. Mech Ageing Dev. 2003;124:409–18.
pubmed: 12714247
doi: 10.1016/S0047-6374(03)00016-2
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619:707–15.
pubmed: 37495877
doi: 10.1038/s41586-023-06243-w
Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J Hematol Oncol. 2018;11:91.
pubmed: 29973238
pmcid: 6032767
doi: 10.1186/s13045-018-0629-x
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.
pubmed: 33824268
pmcid: 8024391
doi: 10.1038/s41408-021-00459-7
Chicaybam L, Abdo L, Carneiro M, Peixoto B, Viegas M, De Sousa P, et al. CAR T cells generated using sleeping beauty transposon vectors and expanded with an EBV-transformed lymphoblastoid cell line display antitumor activity in vitro and in vivo. Hum Gene Ther. 2019;30:511–22.
pubmed: 30793967
doi: 10.1089/hum.2018.218
Chicaybam L, Abdo L, Viegas M, Marques LVC, de Sousa P, Batista-Silva LR, et al. Transposon-mediated generation of CAR-T cells shows efficient anti B-cell leukemia response after ex vivo expansion. Gene Ther. 2020;27:85–95.
pubmed: 31919448
doi: 10.1038/s41434-020-0121-4
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.
pubmed: 19172693
doi: 10.1038/nri2395
Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64.
pubmed: 32709406
pmcid: 7751844
doi: 10.1016/j.tips.2020.06.009
Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103:1283–8.
pubmed: 16432190
pmcid: 1345715
doi: 10.1073/pnas.0510511103
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.
pubmed: 22504485
pmcid: 3727429
doi: 10.1038/nm.2736
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci. 2022;79:177.
pubmed: 35247083
pmcid: 11073024
doi: 10.1007/s00018-022-04207-3
Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020;21: e48052.
pubmed: 31984629
pmcid: 7001501
doi: 10.15252/embr.201948052
Yang F, Zhang Y, Liu S, Xiao J, He Y, Shao Z, et al. Tunneling nanotube-mediated mitochondrial transfer rescues nucleus pulposus cells from mitochondrial dysfunction and apoptosis. Oxid Med Cell Longev. 2022;2022:3613319.
pubmed: 35281461
pmcid: 8916857
Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022;12:66.
pubmed: 35590379
pmcid: 9121600
doi: 10.1186/s13578-022-00805-7
Harada S, Hashimoto D, Senjo H, Yoneda K, Zhang Z, Chen X, et al. Intercellular mitochondrial transfer enhances metabolic fitness and anti-tumor effects of CAR T cells. Blood. 2022;140:2356–7.
doi: 10.1182/blood-2022-162535
Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:712.
pubmed: 28843072
doi: 10.1016/j.immuni.2016.02.023
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Hubbard T. The Ensembl genome database project. Nucleic Acids Res. 2002;30:38–41.
pubmed: 11752248
pmcid: 99161
doi: 10.1093/nar/30.1.38
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
pubmed: 31375807
pmcid: 7605509
doi: 10.1038/s41587-019-0201-4
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
pubmed: 22383036
pmcid: 3334321
doi: 10.1038/nprot.2012.016
Grote S. Gene ontology enrichment using FUNC. R Packag version 1180. R package. 2022.
González PL, Carvajal C, Cuenca J, Alcayaga-Miranda F, Figueroa FE, Bartolucci J, et al. Chorion mesenchymal stem cells show superior differentiation, immunosuppressive, and angiogenic potentials in comparison with haploidentical maternal placental cells. Stem Cells Transl Med. 2015;4:1109–21.
pubmed: 26273064
pmcid: 4572900
doi: 10.5966/sctm.2015-0022
Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal]). Circ Res. 2017;121:1192–204.
pubmed: 28974553
pmcid: 6372053
doi: 10.1161/CIRCRESAHA.117.310712
Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.
pubmed: 25766410
pmcid: 4358056
doi: 10.1038/srep09073
Chicaybam L, Barcelos C, Peixoto B, Carneiro M, Limia CG, Redondo P, et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Front Bioeng Biotechnol. 2017;4:99.
pubmed: 28168187
pmcid: 5253374
doi: 10.3389/fbioe.2016.00099
Chen F, LoTurco J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods. 2012;207:172–80.
pubmed: 22521325
pmcid: 3972033
doi: 10.1016/j.jneumeth.2012.03.016
Roesslein M, Schibilsky D, Muller L, Goebel U, Schwer C, Humar M, et al. Thiopental protects human T lymphocytes from apoptosis in vitro via the expression of heat shock protein 70. J Pharmacol Exp Ther. 2008;325:217–25.
pubmed: 18218830
doi: 10.1124/jpet.107.133108
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 2020;21:284–99.
pubmed: 32094664
pmcid: 7204409
doi: 10.1038/s41580-020-0218-z
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, et al. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther. 2022;232: 108009.
pubmed: 34619284
doi: 10.1016/j.pharmthera.2021.108009
Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrère-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019;10:232.
pubmed: 31370879
pmcid: 6676586
doi: 10.1186/s13287-019-1307-9
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol. 2021;22:1551–62.
pubmed: 34811544
pmcid: 8756813
doi: 10.1038/s41590-021-01065-2
Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22:1181–91.
pubmed: 25571977
pmcid: 4572865
doi: 10.1038/cdd.2014.211
Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, et al. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ. 2007;14:524–33.
pubmed: 17039249
doi: 10.1038/sj.cdd.4402050
Wei B, Ji M, Lin Y, Wang S, Liu Y, Geng R, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 2023;14:104.
pubmed: 37101277
pmcid: 10134653
doi: 10.1186/s13287-023-03329-0
Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS ONE. 2012;7: e32778.
pubmed: 22412925
pmcid: 3295770
doi: 10.1371/journal.pone.0032778
Wang K, Zhou L, Mao H, Liu J, Chen Z, Zhang L. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 2023;56: e13442.
pubmed: 37086012
pmcid: 10472516
doi: 10.1111/cpr.13442
Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med. 2019;8:215–24.
pubmed: 30592390
doi: 10.1002/sctm.18-0053
Matas J, García C, Poblete D, Vernal R, Ortloff A, Luque-Campos N, et al. A phase I dose-escalation clinical trial to assess the safety and efficacy of umbilical cord-derived mesenchymal stromal cells in knee osteoarthritis. Stem Cells Transl Med. 2024;13:193–203.
pubmed: 38366909
pmcid: 10940813
doi: 10.1093/stcltm/szad088
Brizuela C, Meza G, Urrejola D, Quezada MA, Concha G, Ramírez V, et al. Cell-based regenerative endodontics for treatment of periapical lesions: a randomized, controlled phase I/II clinical trial. J Dent Res. 2020;99:523–9.
pubmed: 32202965
doi: 10.1177/0022034520913242
Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol. 2003;160:65–75.
pubmed: 12515825
pmcid: 2172744
doi: 10.1083/jcb.200208089
Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000;7:1182–91.
pubmed: 11175255
doi: 10.1038/sj.cdd.4400781
Tschumi BO, Dumauthioz N, Marti B, Zhang L, Schneider P, Mach JP, et al. CART cells are prone to Fas- and DR5-mediated cell death. J Immunother Cancer. 2018;6:71.
pubmed: 30005714
pmcid: 6045821
doi: 10.1186/s40425-018-0385-z
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J Allergy Clin Immunol. 2018;142:1710–8.
pubmed: 30367909
doi: 10.1016/j.jaci.2018.10.015
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.
pubmed: 29567707
doi: 10.1126/science.aar6711
Ohno R, Nakamura A. Advancing autoimmune rheumatic disease treatment: CAR-T cell therapies—evidence, safety, and future directions. Semin Arthritis Rheum. 2024;67: 152479.
pubmed: 38810569
doi: 10.1016/j.semarthrit.2024.152479
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T cell metabolism for therapeutic efficacy. Cancers. 2022;14:5442.
pubmed: 36358860
pmcid: 9658570
doi: 10.3390/cancers14215442
Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature. 2023;614:635–48.
pubmed: 36813894
doi: 10.1038/s41586-023-05707-3
Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, Einsele H, et al. Enhanced CAR T-cell engineering using non-viral sleeping beauty transposition from minicircle vectors. Leukemia. 2017;31:186–94.
pubmed: 27491640
doi: 10.1038/leu.2016.180
Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. PLoS ONE. 2013;8: e64138.
pubmed: 23741305
pmcid: 3669363
doi: 10.1371/journal.pone.0064138
Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, Quade-Lyssy P, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free sleeping beauty gene transfer to treat multiple myeloma. Gene Ther. 2021;28:560–71.
pubmed: 33846552
pmcid: 8455317
doi: 10.1038/s41434-021-00254-w
Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, et al. Sleeping beauty—engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130:6021–33.
pubmed: 32780725
pmcid: 7598053
doi: 10.1172/JCI138473
Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126:3363–76.
pubmed: 27482888
pmcid: 5004935
doi: 10.1172/JCI86721
Micklethwaite KP, Gowrishankar K, Gloss BS, Li Z, Street JA, Moezzi L, et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood. 2021;138:1391–405.
pubmed: 33974080
pmcid: 8532197
doi: 10.1182/blood.2021010858
Nishio N, Hanajiri R, Ishikawa Y, Murata M, Taniguchi R, Hamada M, et al. A phase I study of CD19 chimeric antigen receptor-T cells generated by the PiggyBac transposon vector for acute lymphoblastic leukemia. Blood. 2021;138:3831.
doi: 10.1182/blood-2021-150469
Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021;147:3725–34.
pubmed: 34032893
doi: 10.1007/s00432-021-03613-7
Silveira CRF, Corveloni AC, Caruso SR, Macêdo NA, Brussolo NM, Haddad F, et al. Cytokines as an important player in the context of CAR-T cell therapy for cancer: their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol. 2022;13: 947648.
pubmed: 36172343
pmcid: 9512053
doi: 10.3389/fimmu.2022.947648
Manni S, Del Bufalo F, Merli P, Silvestris DA, Guercio M, Caruso S, et al. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat Commun. 2023;14:3423.
pubmed: 37296093
pmcid: 10256701
doi: 10.1038/s41467-023-38723-y