Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells.


Journal

Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 12 02 2024
accepted: 14 08 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

Apoptosis, a form of programmed cell death, is critical for the development and homeostasis of the immune system. Chimeric antigen receptor T (CAR-T) cell therapy, approved for hematologic cancers, retains several limitations and challenges associated with ex vivo manipulation, including CAR T-cell susceptibility to apoptosis. Therefore, strategies to improve T-cell survival and persistence are required. Mesenchymal stem/stromal cells (MSCs) exhibit immunoregulatory and tissue-restoring potential. We have previously shown that the transfer of umbilical cord MSC (UC-MSC)-derived mitochondrial (MitoT) prompts the genetic reprogramming of CD3 We used a cell-free approach using artificial MitoT (Mitoception) of UC-MSC derived MT to peripheral blood mononuclear cells (PBMCs) followed by RNA-seq analysis of CD3 Gene expression related to apoptosis, cell death and/or responses to different stimuli was modified in CD3 Artificial MitoT prevents STS-induced apoptosis of human CD3

Sections du résumé

BACKGROUND BACKGROUND
Apoptosis, a form of programmed cell death, is critical for the development and homeostasis of the immune system. Chimeric antigen receptor T (CAR-T) cell therapy, approved for hematologic cancers, retains several limitations and challenges associated with ex vivo manipulation, including CAR T-cell susceptibility to apoptosis. Therefore, strategies to improve T-cell survival and persistence are required. Mesenchymal stem/stromal cells (MSCs) exhibit immunoregulatory and tissue-restoring potential. We have previously shown that the transfer of umbilical cord MSC (UC-MSC)-derived mitochondrial (MitoT) prompts the genetic reprogramming of CD3
METHODS METHODS
We used a cell-free approach using artificial MitoT (Mitoception) of UC-MSC derived MT to peripheral blood mononuclear cells (PBMCs) followed by RNA-seq analysis of CD3
RESULTS RESULTS
Gene expression related to apoptosis, cell death and/or responses to different stimuli was modified in CD3
CONCLUSIONS CONCLUSIONS
Artificial MitoT prevents STS-induced apoptosis of human CD3

Identifiants

pubmed: 39334383
doi: 10.1186/s12967-024-05627-4
pii: 10.1186/s12967-024-05627-4
doi:

Substances chimiques

Receptors, Chimeric Antigen 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

868

Subventions

Organisme : Agencia Nacional de Investigación y Desarrollo
ID : Fondecyt Regular 1211749
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : FONDECYT Iniciación 11240539
Organisme : Basal Funding for Scientific and Technological Center of Excellence
ID : FB210024

Informations de copyright

© 2024. The Author(s).

Références

Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.
pubmed: 18073771 doi: 10.1038/nrm2312
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.
pubmed: 30655609 pmcid: 7325303 doi: 10.1038/s41580-018-0089-8
Opferman JT. Apoptosis in the development of the immune system. Cell Death Differ. 2008;15:234–42.
pubmed: 17571082 doi: 10.1038/sj.cdd.4402182
Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell. 2002;109(Suppl):S97–107.
pubmed: 11983156 doi: 10.1016/S0092-8674(02)00704-3
Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;27:2749–67.
pubmed: 32346136 pmcid: 7492225 doi: 10.1038/s41418-020-0540-1
Salvioli S, Capri M, Scarcella E, Mangherini S, Faranca I, Volterra V, et al. Age-dependent changes in the susceptibility to apoptosis of peripheral blood CD4+ and CD8+ T lymphocytes with virgin or memory phenotype. Mech Ageing Dev. 2003;124:409–18.
pubmed: 12714247 doi: 10.1016/S0047-6374(03)00016-2
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619:707–15.
pubmed: 37495877 doi: 10.1038/s41586-023-06243-w
Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J Hematol Oncol. 2018;11:91.
pubmed: 29973238 pmcid: 6032767 doi: 10.1186/s13045-018-0629-x
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.
pubmed: 33824268 pmcid: 8024391 doi: 10.1038/s41408-021-00459-7
Chicaybam L, Abdo L, Carneiro M, Peixoto B, Viegas M, De Sousa P, et al. CAR T cells generated using sleeping beauty transposon vectors and expanded with an EBV-transformed lymphoblastoid cell line display antitumor activity in vitro and in vivo. Hum Gene Ther. 2019;30:511–22.
pubmed: 30793967 doi: 10.1089/hum.2018.218
Chicaybam L, Abdo L, Viegas M, Marques LVC, de Sousa P, Batista-Silva LR, et al. Transposon-mediated generation of CAR-T cells shows efficient anti B-cell leukemia response after ex vivo expansion. Gene Ther. 2020;27:85–95.
pubmed: 31919448 doi: 10.1038/s41434-020-0121-4
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.
pubmed: 19172693 doi: 10.1038/nri2395
Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64.
pubmed: 32709406 pmcid: 7751844 doi: 10.1016/j.tips.2020.06.009
Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103:1283–8.
pubmed: 16432190 pmcid: 1345715 doi: 10.1073/pnas.0510511103
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.
pubmed: 22504485 pmcid: 3727429 doi: 10.1038/nm.2736
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci. 2022;79:177.
pubmed: 35247083 pmcid: 11073024 doi: 10.1007/s00018-022-04207-3
Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020;21: e48052.
pubmed: 31984629 pmcid: 7001501 doi: 10.15252/embr.201948052
Yang F, Zhang Y, Liu S, Xiao J, He Y, Shao Z, et al. Tunneling nanotube-mediated mitochondrial transfer rescues nucleus pulposus cells from mitochondrial dysfunction and apoptosis. Oxid Med Cell Longev. 2022;2022:3613319.
pubmed: 35281461 pmcid: 8916857
Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022;12:66.
pubmed: 35590379 pmcid: 9121600 doi: 10.1186/s13578-022-00805-7
Harada S, Hashimoto D, Senjo H, Yoneda K, Zhang Z, Chen X, et al. Intercellular mitochondrial transfer enhances metabolic fitness and anti-tumor effects of CAR T cells. Blood. 2022;140:2356–7.
doi: 10.1182/blood-2022-162535
Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:712.
pubmed: 28843072 doi: 10.1016/j.immuni.2016.02.023
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Hubbard T. The Ensembl genome database project. Nucleic Acids Res. 2002;30:38–41.
pubmed: 11752248 pmcid: 99161 doi: 10.1093/nar/30.1.38
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
pubmed: 31375807 pmcid: 7605509 doi: 10.1038/s41587-019-0201-4
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
pubmed: 22383036 pmcid: 3334321 doi: 10.1038/nprot.2012.016
Grote S. Gene ontology enrichment using FUNC. R Packag version 1180. R package. 2022.
González PL, Carvajal C, Cuenca J, Alcayaga-Miranda F, Figueroa FE, Bartolucci J, et al. Chorion mesenchymal stem cells show superior differentiation, immunosuppressive, and angiogenic potentials in comparison with haploidentical maternal placental cells. Stem Cells Transl Med. 2015;4:1109–21.
pubmed: 26273064 pmcid: 4572900 doi: 10.5966/sctm.2015-0022
Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal]). Circ Res. 2017;121:1192–204.
pubmed: 28974553 pmcid: 6372053 doi: 10.1161/CIRCRESAHA.117.310712
Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.
pubmed: 25766410 pmcid: 4358056 doi: 10.1038/srep09073
Chicaybam L, Barcelos C, Peixoto B, Carneiro M, Limia CG, Redondo P, et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Front Bioeng Biotechnol. 2017;4:99.
pubmed: 28168187 pmcid: 5253374 doi: 10.3389/fbioe.2016.00099
Chen F, LoTurco J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods. 2012;207:172–80.
pubmed: 22521325 pmcid: 3972033 doi: 10.1016/j.jneumeth.2012.03.016
Roesslein M, Schibilsky D, Muller L, Goebel U, Schwer C, Humar M, et al. Thiopental protects human T lymphocytes from apoptosis in vitro via the expression of heat shock protein 70. J Pharmacol Exp Ther. 2008;325:217–25.
pubmed: 18218830 doi: 10.1124/jpet.107.133108
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 2020;21:284–99.
pubmed: 32094664 pmcid: 7204409 doi: 10.1038/s41580-020-0218-z
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, et al. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther. 2022;232: 108009.
pubmed: 34619284 doi: 10.1016/j.pharmthera.2021.108009
Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrère-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019;10:232.
pubmed: 31370879 pmcid: 6676586 doi: 10.1186/s13287-019-1307-9
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol. 2021;22:1551–62.
pubmed: 34811544 pmcid: 8756813 doi: 10.1038/s41590-021-01065-2
Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22:1181–91.
pubmed: 25571977 pmcid: 4572865 doi: 10.1038/cdd.2014.211
Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, et al. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ. 2007;14:524–33.
pubmed: 17039249 doi: 10.1038/sj.cdd.4402050
Wei B, Ji M, Lin Y, Wang S, Liu Y, Geng R, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 2023;14:104.
pubmed: 37101277 pmcid: 10134653 doi: 10.1186/s13287-023-03329-0
Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS ONE. 2012;7: e32778.
pubmed: 22412925 pmcid: 3295770 doi: 10.1371/journal.pone.0032778
Wang K, Zhou L, Mao H, Liu J, Chen Z, Zhang L. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 2023;56: e13442.
pubmed: 37086012 pmcid: 10472516 doi: 10.1111/cpr.13442
Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med. 2019;8:215–24.
pubmed: 30592390 doi: 10.1002/sctm.18-0053
Matas J, García C, Poblete D, Vernal R, Ortloff A, Luque-Campos N, et al. A phase I dose-escalation clinical trial to assess the safety and efficacy of umbilical cord-derived mesenchymal stromal cells in knee osteoarthritis. Stem Cells Transl Med. 2024;13:193–203.
pubmed: 38366909 pmcid: 10940813 doi: 10.1093/stcltm/szad088
Brizuela C, Meza G, Urrejola D, Quezada MA, Concha G, Ramírez V, et al. Cell-based regenerative endodontics for treatment of periapical lesions: a randomized, controlled phase I/II clinical trial. J Dent Res. 2020;99:523–9.
pubmed: 32202965 doi: 10.1177/0022034520913242
Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol. 2003;160:65–75.
pubmed: 12515825 pmcid: 2172744 doi: 10.1083/jcb.200208089
Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000;7:1182–91.
pubmed: 11175255 doi: 10.1038/sj.cdd.4400781
Tschumi BO, Dumauthioz N, Marti B, Zhang L, Schneider P, Mach JP, et al. CART cells are prone to Fas- and DR5-mediated cell death. J Immunother Cancer. 2018;6:71.
pubmed: 30005714 pmcid: 6045821 doi: 10.1186/s40425-018-0385-z
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J Allergy Clin Immunol. 2018;142:1710–8.
pubmed: 30367909 doi: 10.1016/j.jaci.2018.10.015
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.
pubmed: 29567707 doi: 10.1126/science.aar6711
Ohno R, Nakamura A. Advancing autoimmune rheumatic disease treatment: CAR-T cell therapies—evidence, safety, and future directions. Semin Arthritis Rheum. 2024;67: 152479.
pubmed: 38810569 doi: 10.1016/j.semarthrit.2024.152479
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T cell metabolism for therapeutic efficacy. Cancers. 2022;14:5442.
pubmed: 36358860 pmcid: 9658570 doi: 10.3390/cancers14215442
Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature. 2023;614:635–48.
pubmed: 36813894 doi: 10.1038/s41586-023-05707-3
Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, Einsele H, et al. Enhanced CAR T-cell engineering using non-viral sleeping beauty transposition from minicircle vectors. Leukemia. 2017;31:186–94.
pubmed: 27491640 doi: 10.1038/leu.2016.180
Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. PLoS ONE. 2013;8: e64138.
pubmed: 23741305 pmcid: 3669363 doi: 10.1371/journal.pone.0064138
Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, Quade-Lyssy P, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free sleeping beauty gene transfer to treat multiple myeloma. Gene Ther. 2021;28:560–71.
pubmed: 33846552 pmcid: 8455317 doi: 10.1038/s41434-021-00254-w
Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, et al. Sleeping beauty—engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130:6021–33.
pubmed: 32780725 pmcid: 7598053 doi: 10.1172/JCI138473
Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126:3363–76.
pubmed: 27482888 pmcid: 5004935 doi: 10.1172/JCI86721
Micklethwaite KP, Gowrishankar K, Gloss BS, Li Z, Street JA, Moezzi L, et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood. 2021;138:1391–405.
pubmed: 33974080 pmcid: 8532197 doi: 10.1182/blood.2021010858
Nishio N, Hanajiri R, Ishikawa Y, Murata M, Taniguchi R, Hamada M, et al. A phase I study of CD19 chimeric antigen receptor-T cells generated by the PiggyBac transposon vector for acute lymphoblastic leukemia. Blood. 2021;138:3831.
doi: 10.1182/blood-2021-150469
Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021;147:3725–34.
pubmed: 34032893 doi: 10.1007/s00432-021-03613-7
Silveira CRF, Corveloni AC, Caruso SR, Macêdo NA, Brussolo NM, Haddad F, et al. Cytokines as an important player in the context of CAR-T cell therapy for cancer: their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol. 2022;13: 947648.
pubmed: 36172343 pmcid: 9512053 doi: 10.3389/fimmu.2022.947648
Manni S, Del Bufalo F, Merli P, Silvestris DA, Guercio M, Caruso S, et al. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat Commun. 2023;14:3423.
pubmed: 37296093 pmcid: 10256701 doi: 10.1038/s41467-023-38723-y

Auteurs

Angela C Court (AC)

IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
Cell for Cells, Santiago, Chile.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile.

Eliseo Parra-Crisóstomo (E)

Cell for Cells, Santiago, Chile.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile.

Pablo Castro-Córdova (P)

IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile.

Luiza Abdo (L)

Cell and Gene Therapy Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil.

Emmanuel Arthur Albuquerque Aragão (EAA)

Cell and Gene Therapy Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil.

Rocío Lorca (R)

IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile.

Fernando E Figueroa (FE)

IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile.
Consorcio Regenero and R-MATIS, Chilean Consortium for Regenerative Medicine, and Manufacture of Advanced Therapies for Innovative Science, Santiago, Chile.

Martín Hernán Bonamino (MH)

Cell and Gene Therapy Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil.
Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, Brazil.

Maroun Khoury (M)

IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile. mkhoury@uandes.cl.
Cell for Cells, Santiago, Chile. mkhoury@uandes.cl.
Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Av. La Plaza 2501, Las Condes, Santiago, Chile. mkhoury@uandes.cl.
Consorcio Regenero and R-MATIS, Chilean Consortium for Regenerative Medicine, and Manufacture of Advanced Therapies for Innovative Science, Santiago, Chile. mkhoury@uandes.cl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH