Aggravating mechanisms from COVID-19.


Journal

Virology journal
ISSN: 1743-422X
Titre abrégé: Virol J
Pays: England
ID NLM: 101231645

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 08 08 2024
accepted: 16 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.

Identifiants

pubmed: 39334442
doi: 10.1186/s12985-024-02506-8
pii: 10.1186/s12985-024-02506-8
doi:

Substances chimiques

Inflammasomes 0
cGAS protein, human EC 2.7.7.-
SAM Domain and HD Domain-Containing Protein 1 EC 3.1.5.-
Nucleotidyltransferases EC 2.7.7.-
STING1 protein, human 0
Membrane Proteins 0
SAMHD1 protein, human EC 3.1.5.-

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

228

Informations de copyright

© 2024. The Author(s).

Références

Kakavandi S, et al. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal. 2023;21:110. https://doi.org/10.1186/s12964-023-01104-5 .
doi: 10.1186/s12964-023-01104-5 pubmed: 37189112 pmcid: 10183699
Choudhury A, Mukherjee G, Mukherjee S. Chemotherapy vs. Immunotherapy in combating nCOVID19: an update. Hum Immunol. 2021;82:649–58. https://doi.org/10.1016/j.humimm.2021.05.001 .
doi: 10.1016/j.humimm.2021.05.001 pubmed: 34020832 pmcid: 8130497
Lucas C, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463–9. https://doi.org/10.1038/s41586-020-2588-y .
doi: 10.1038/s41586-020-2588-y pubmed: 32717743 pmcid: 7477538
McElvaney OJ, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202:812–21. https://doi.org/10.1164/rccm.202005-1583OC .
doi: 10.1164/rccm.202005-1583OC pubmed: 32584597 pmcid: 7491404
Vabret N, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52:910–41. https://doi.org/10.1016/j.immuni.2020.05.002 .
doi: 10.1016/j.immuni.2020.05.002 pubmed: 32505227 pmcid: 7200337
Thwaites RS, et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci Immunol. 2021;6:eabg9873. https://doi.org/10.1126/sciimmunol.abg9873 .
doi: 10.1126/sciimmunol.abg9873 pubmed: 33692097 pmcid: 8128298
Jarczak D, Nierhaus A. Cytokine Storm—definition, causes, and implications. Int J Mol Sci. 2022;23:11740.
doi: 10.3390/ijms231911740 pubmed: 36233040 pmcid: 9570384
Pan P, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12:4664. https://doi.org/10.1038/s41467-021-25015-6 .
doi: 10.1038/s41467-021-25015-6 pubmed: 34341353 pmcid: 8329225
Ren X, et al. Caspase-1-responsive fluorescence biosensors for monitoring endogenous inflammasome activation. Biosens Bioelectron. 2023;219:114812. https://doi.org/10.1016/j.bios.2022.114812 .
doi: 10.1016/j.bios.2022.114812 pubmed: 36272346
Domizio JD, et al. The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature. 2022;603:145–51. https://doi.org/10.1038/s41586-022-04421-w .
doi: 10.1038/s41586-022-04421-w pubmed: 35045565 pmcid: 8891013
Chen C, Xu P. Cellular functions of cGAS–STING signaling. Trends Cell Biol. 2023;33:630–48. https://doi.org/10.1016/j.tcb.2022.11.001 .
doi: 10.1016/j.tcb.2022.11.001 pubmed: 36437149
Liu X, et al. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS–STING pathway and the interferon response. Sci Signal. 2022;15:eabg8744. https://doi.org/10.1126/scisignal.abg8744 .
doi: 10.1126/scisignal.abg8744 pubmed: 35412852
Coquel F, et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature. 2018;557:57–61.
doi: 10.1038/s41586-018-0050-1 pubmed: 29670289
Rice GI, et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41:829–32. https://doi.org/10.1038/ng.373 .
doi: 10.1038/ng.373 pubmed: 19525956 pmcid: 4154505
Crow YJ, Manel N. Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429–40. https://doi.org/10.1038/nri3850 .
doi: 10.1038/nri3850 pubmed: 26052098
Lee D, et al. Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children. Science. 2023;379:eabo3627. https://doi.org/10.1126/science.abo3627 .
doi: 10.1126/science.abo3627 pubmed: 36538032 pmcid: 10451000
Stillman B. Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proc Natl Acad Sci. 2013;110:14120–1. https://doi.org/10.1073/pnas.1312901110 .
doi: 10.1073/pnas.1312901110 pubmed: 23946423 pmcid: 3761580
Rodrigues TS, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2020. https://doi.org/10.1084/jem.20201707 .
doi: 10.1084/jem.20201707 pubmed: 31876919 pmcid: 7684031
Rodrigues TS, Zamboni DS. Inflammasome activation by SARS-CoV-2 and its participation in COVID-19 exacerbation. Curr Opin Immunol. 2023;84:102387. https://doi.org/10.1016/j.coi.2023.102387 .
doi: 10.1016/j.coi.2023.102387 pubmed: 37703588
Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A. 2013;110:17963–8.
doi: 10.1073/pnas.1312571110 pubmed: 24127597 pmcid: 3816452
Wang YC, et al. SARS-CoV-2 nucleocapsid protein, rather than spike protein, triggers a cytokine storm originating from lung epithelial cells in patients with COVID-19. Infection. 2023. https://doi.org/10.1007/s15010-023-02142-4 .
doi: 10.1007/s15010-023-02142-4 pubmed: 38133713 pmcid: 11143065
Liu M-H, Lin X-L, Xiao L-L. SARS-CoV-2 nucleocapsid protein promotes TMAO-induced NLRP3 inflammasome activation by SCAP–SREBP signaling pathway. Tissue Cell. 2024;86:102276. https://doi.org/10.1016/j.tice.2023.102276 .
doi: 10.1016/j.tice.2023.102276 pubmed: 37979395
Villacampa A, et al. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell Commun Signal. 2024;22:38. https://doi.org/10.1186/s12964-023-01397-6 .
doi: 10.1186/s12964-023-01397-6 pubmed: 38225643 pmcid: 10788971
Dardalhon V, Korn T, Kuchroo VK, Anderson AC. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun. 2008;31:252–6. https://doi.org/10.1016/j.jaut.2008.04.017 .
doi: 10.1016/j.jaut.2008.04.017 pubmed: 18502610 pmcid: 3178062
Vargas-Rojas MI, et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med. 2011;105:1648–54. https://doi.org/10.1016/j.rmed.2011.05.017 .
doi: 10.1016/j.rmed.2011.05.017 pubmed: 21763119
Ferreira AC, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discovery. 2021;7:43. https://doi.org/10.1038/s41420-021-00428-w .
doi: 10.1038/s41420-021-00428-w pubmed: 33649297 pmcid: 7919254
Park S, et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J Immunol. 2013;191:4358–66. https://doi.org/10.4049/jimmunol.1301170 .
doi: 10.4049/jimmunol.1301170 pubmed: 24048902
Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21:694–703. https://doi.org/10.1038/s41577-021-00588-x .
doi: 10.1038/s41577-021-00588-x pubmed: 34373622 pmcid: 8351223
Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci. 2013;110:17963–8. https://doi.org/10.1073/pnas.1312571110 .
doi: 10.1073/pnas.1312571110 pubmed: 24127597 pmcid: 3816452
Schmacke NA, et al. IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity. 2022. https://doi.org/10.1016/j.immuni.2022.10.021 .
doi: 10.1016/j.immuni.2022.10.021 pubmed: 36384135 pmcid: 7614333
Okondo MC, et al. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem Biol. 2018;25:262-267.e265. https://doi.org/10.1016/j.chembiol.2017.12.013 .
doi: 10.1016/j.chembiol.2017.12.013 pubmed: 29396289 pmcid: 5856610
de Oliveira Mann CC, Hopfner K-P. Nuclear cGAS: guard or prisoner? EMBO J. 2021;40:e108293. https://doi.org/10.15252/embj.2021108293 .
doi: 10.15252/embj.2021108293 pubmed: 34250619 pmcid: 8365253
Ren H, et al. Micronucleus production, activation of DNA damage response and cGAS–STING signaling in syncytia induced by SARS-CoV-2 infection. Biol Direct. 2021;16:20. https://doi.org/10.1186/s13062-021-00305-7 .
doi: 10.1186/s13062-021-00305-7 pubmed: 34674770 pmcid: 8530504
Lee JH, et al. COVID-19 molecular pathophysiology: acetylation of repurposing drugs. Int J Mol Sci. 2022;23:13260.
doi: 10.3390/ijms232113260 pubmed: 36362045 pmcid: 9656873
Neufeldt CJ, et al. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS–STING and NF-κB. Commun Biol. 2022;5:45.
doi: 10.1038/s42003-021-02983-5 pubmed: 35022513 pmcid: 8755718
Jiang S, et al. The porcine cyclic GMP-AMP Synthase-STING pathway exerts an unusual antiviral function independent of interferon and autophagy. J Virol. 2022. https://doi.org/10.1128/jvi.01476-22 .
doi: 10.1128/jvi.01476-22 pubmed: 36468862 pmcid: 9769396
Paul BD, Snyder SH, Bohr VA. Signaling by cGAS–STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci. 2021;44:83–96. https://doi.org/10.1016/j.tins.2020.10.008 .
doi: 10.1016/j.tins.2020.10.008 pubmed: 33187730
Kanwar B, Lee CJ, Lee J-H. Specific treatment exists for SARS-CoV-2 ARDS. Vaccines. 2021;9:635.
doi: 10.3390/vaccines9060635 pubmed: 34200720 pmcid: 8229893
Ferren M, et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat Commun. 2021;12:5809. https://doi.org/10.1038/s41467-021-26096-z .
doi: 10.1038/s41467-021-26096-z pubmed: 34608167 pmcid: 8490365
Chin AC. Neuroinflammation and the cGAS–STING pathway. J Neurophysiol. 2019;121:1087–91. https://doi.org/10.1152/jn.00848.2018 .
doi: 10.1152/jn.00848.2018 pubmed: 30673358
Gulen MF, et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature. 2023;620:374–80. https://doi.org/10.1038/s41586-023-06373-1 .
doi: 10.1038/s41586-023-06373-1 pubmed: 37532932 pmcid: 10412454
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem. 2015;290:26352–9. https://doi.org/10.1074/jbc.M115.677435 .
doi: 10.1074/jbc.M115.677435 pubmed: 26294762 pmcid: 4646291
Roux A, et al. FOXO1 transcription factor plays a key role in T cell—HIV-1 interaction. PLoS Pathog. 2019;15: e1007669. https://doi.org/10.1371/journal.ppat.1007669 .
doi: 10.1371/journal.ppat.1007669 pubmed: 31042779 pmcid: 6513100
Franzolin E, Salata C, Bianchi V, Rampazzo C. The deoxynucleoside triphosphate triphosphohydrolase activity of SAMHD1 protein contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase *. J Biol Chem. 2015;290:25986–96. https://doi.org/10.1074/jbc.M115.675082 .
doi: 10.1074/jbc.M115.675082 pubmed: 26342080 pmcid: 4646252
White TE, et al. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe. 2013;13:441–51. https://doi.org/10.1016/j.chom.2013.03.005 .
doi: 10.1016/j.chom.2013.03.005 pubmed: 23601106
Wu L. Cellular and biochemical mechanisms of the retroviral restriction factor SAMHD1. Int Sch Res Not. 2013;2013:728392. https://doi.org/10.1155/2013/728392 .
doi: 10.1155/2013/728392
Chen S, et al. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proc Natl Acad Sci. 2018;115:E3798–807.
pubmed: 29610295 pmcid: 5910870
Cingöz O, Arnow ND, Puig Torrents M, Bannert N. Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection. Retrovirology. 2021;18:4. https://doi.org/10.1186/s12977-021-00548-2 .
doi: 10.1186/s12977-021-00548-2 pubmed: 33563288 pmcid: 7871410
Su J, et al. HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS–STING-mediated NF-κB signalling. Nat Microbiol. 2019;4:2552–64. https://doi.org/10.1038/s41564-019-0585-4 .
doi: 10.1038/s41564-019-0585-4 pubmed: 31659299
Olajide OA, Iwuanyanwu VU, Adegbola OD, Al-Hindawi AA. SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2 microglia. Mol Neurobiol. 2021. https://doi.org/10.1007/s12035-021-02593-6 .
doi: 10.1007/s12035-021-02593-6 pubmed: 34709564 pmcid: 8551352
Albornoz EA, et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01831-0 .
doi: 10.1038/s41380-022-01831-0 pubmed: 36316366 pmcid: 10615762
Lee J-H, Choi S-H, Lee CJ, Oh S-S. Recovery of dementia syndrome following treatment of brain inflammation. Dement Geriatr Cogn Disord Extra. 2020;10:1–12. https://doi.org/10.1159/000504880 .
doi: 10.1159/000504880
Lee JH, Lee CJ, Park J, Lee SJ, Choi SH. The neuroinflammasome in Alzheimer’s disease and cerebral stroke. Dement Geriatr Cogn Dis Extra. 2021;11:159–67. https://doi.org/10.1159/000516074 .
doi: 10.1159/000516074 pubmed: 34249072 pmcid: 8255751
Beckman D, et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022. https://doi.org/10.1016/j.celrep.2022.111573 .
doi: 10.1016/j.celrep.2022.111573 pubmed: 36288725 pmcid: 9554328
Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020;92:2105–13.
doi: 10.1002/jmv.25987 pubmed: 32383269 pmcid: 7267663
Horowitz JE, et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;54:382–92. https://doi.org/10.1038/s41588-021-01006-7 .
doi: 10.1038/s41588-021-01006-7 pubmed: 35241825 pmcid: 9005345
Kucia M, et al. An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent manner. Leukemia. 2021. https://doi.org/10.1038/s41375-021-01332-z .
doi: 10.1038/s41375-021-01332-z pubmed: 34853440 pmcid: 8727304
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587:610–2. https://doi.org/10.1038/s41586-020-2818-3 .
doi: 10.1038/s41586-020-2818-3 pubmed: 32998156
Rannikko EH, Weber SS, Kahle PJ. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci. 2015;16:57. https://doi.org/10.1186/s12868-015-0192-0 .
doi: 10.1186/s12868-015-0192-0 pubmed: 26346361 pmcid: 4562100
Muscat SM, Barrientos RM. The perfect cytokine storm: how peripheral immune challenges impact brain plasticity & memory function in aging. Brain Plasticity. 2021;7:47–60. https://doi.org/10.3233/BPL-210127 .
doi: 10.3233/BPL-210127 pubmed: 34631420 pmcid: 8461734
Manik M, Singh RK. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J Med Virol. 2022;94:869–77. https://doi.org/10.1002/jmv.27405 .
doi: 10.1002/jmv.27405 pubmed: 34672376
Frank MG, et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav Immun. 2022;100:267–77. https://doi.org/10.1016/j.bbi.2021.12.007 .
doi: 10.1016/j.bbi.2021.12.007 pubmed: 34915155
Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson’s Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci. 2021;22:7135.
doi: 10.3390/ijms22137135 pubmed: 34281186 pmcid: 8269350
Jurgens HA, Amancherla K, Johnson RW. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci. 2012;32:3958–68.
doi: 10.1523/JNEUROSCI.6389-11.2012 pubmed: 22442063 pmcid: 3353809
Tanaka N, Cortese GP, Barrientos RM, Maier SF, Patterson SL. Aging and an immune challenge interact to produce prolonged, but not permanent, reductions in hippocampal L-LTP and mBDNF in a rodent model with features of delirium. Eneuro. 2018. https://doi.org/10.1523/ENEURO.0009-18.2018 .
doi: 10.1523/ENEURO.0009-18.2018 pubmed: 30627648 pmcid: 6325552
Daly JL, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370:861–5. https://doi.org/10.1126/science.abd3072 .
doi: 10.1126/science.abd3072 pubmed: 33082294 pmcid: 7612957
Cantuti-Castelvetri L, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856–60. https://doi.org/10.1126/science.abd2985 .
doi: 10.1126/science.abd2985 pubmed: 33082293 pmcid: 7857391
Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 Is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92:735–45. https://doi.org/10.1016/S0092-8674(00)81402-6 .
doi: 10.1016/S0092-8674(00)81402-6 pubmed: 9529250
Rizzolio S, et al. Neuropilin-1–dependent regulation of EGF-receptor signaling. Can Res. 2012;72:5801–11. https://doi.org/10.1158/0008-5472.Can-12-0995 .
doi: 10.1158/0008-5472.Can-12-0995
Liu W, et al. Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF. Cytokine. 2005;32:206–12. https://doi.org/10.1016/j.cyto.2005.09.009 .
doi: 10.1016/j.cyto.2005.09.009 pubmed: 16289960
Matsushita A, Gotze T, Korc M. Hepatocyte growth factor-mediated cell invasion in pancreatic cancer cells is dependent on neuropilin-1. Cancer Res. 2007;67:10309–16. https://doi.org/10.1158/0008-5472.Can-07-3256 .
doi: 10.1158/0008-5472.Can-07-3256 pubmed: 17974973
Sulpice E, et al. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood. 2008;111:2036–45. https://doi.org/10.1182/blood-2007-04-084269 .
doi: 10.1182/blood-2007-04-084269 pubmed: 18065694
Slomiany MG, Black LA, Kibbey MM, Day TA, Rosenzweig SA. IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun. 2006;342:851–8. https://doi.org/10.1016/j.bbrc.2006.02.043 .
doi: 10.1016/j.bbrc.2006.02.043 pubmed: 16499871
Ball SG, Bayley C, Shuttleworth CA, Kielty CM. Neuropilin-1 regulates platelet-derived growth factor receptor signalling in mesenchymal stem cells. Biochem J. 2010;427:29–40. https://doi.org/10.1042/bj20091512 .
doi: 10.1042/bj20091512 pubmed: 20102335
Sherafat A, Pfeiffer F, Reiss AM, Wood WM, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265. https://doi.org/10.1038/s41467-021-22532-2 .
doi: 10.1038/s41467-021-22532-2 pubmed: 33859199 pmcid: 8050320
Glinka Y, Prud’homme GJ. Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity. J Leukocyte Biol. 2008;84:302–10. https://doi.org/10.1189/jlb.0208090 .
doi: 10.1189/jlb.0208090 pubmed: 18436584 pmcid: 2504713
Zhang Q, et al. Environmentally-induced <i>mdig</i> contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Theranostics. 2021;11:7970–83. https://doi.org/10.7150/thno.62138 .
doi: 10.7150/thno.62138 pubmed: 34335974 pmcid: 8315075
Kofler N, Simons M. The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol. 2016;23:260–7. https://doi.org/10.1097/moh.0000000000000233 .
doi: 10.1097/moh.0000000000000233 pubmed: 26849476 pmcid: 4957701
Theobald SJ, et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol Med. 2021;13:e14150. https://doi.org/10.15252/emmm.202114150 .
doi: 10.15252/emmm.202114150 pubmed: 34133077 pmcid: 8350892
Eisfeld HS, et al. Viral glycoproteins induce NLRP3 inflammasome activation and pyroptosis in macrophages. Viruses. 2021;13:2076.
doi: 10.3390/v13102076 pubmed: 34696506 pmcid: 8538122
Diaz GA, et al. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021;326:1210–2. https://doi.org/10.1001/jama.2021.13443 .
doi: 10.1001/jama.2021.13443 pubmed: 34347001 pmcid: 8340007
Ratajczak MZ, et al. SARS-CoV-2 entry receptor ACE2 Is expressed on very small CD45—precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the NLRP3 inflammasome. Stem Cell Reviews and Reports. 2021;17:266–77. https://doi.org/10.1007/s12015-020-10010-z .
doi: 10.1007/s12015-020-10010-z pubmed: 32691370
Scully M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384:2202–11. https://doi.org/10.1056/NEJMoa2105385 .
doi: 10.1056/NEJMoa2105385 pubmed: 33861525
Chakrabarti SS, et al. Rapidly progressive dementia with asymmetric rigidity following ChAdOx1 nCoV-19 vaccination. Aging Dis. 2021. https://doi.org/10.14336/ad.2021.1102 .
doi: 10.14336/ad.2021.1102 pubmed: 33532125 pmcid: 7801283
Schultz NH, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384:2124–30.
doi: 10.1056/NEJMoa2104882 pubmed: 33835768
Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13. https://doi.org/10.1038/nature07710 .
doi: 10.1038/nature07710 pubmed: 19158676 pmcid: 2862225
Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-Cell death program upstream of NLRP3. Cell 171, 1110–1124.e1118 (2017). https://doi.org/10.1016/j.cell.2017.09.039
Fengjuan Li NWYZYLYZ. cGAS- stimulator of interferon genes signaling in central nervous system disorders. Aging Dis. 2021;12:1658–74.
doi: 10.14336/AD.2021.0304 pubmed: 34631213 pmcid: 8460300
Han L, et al. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy. J Med Viro. 2022;94:5174–88. https://doi.org/10.1002/jmv.27965 .
doi: 10.1002/jmv.27965
Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci. 2021;118:e2100225118. https://doi.org/10.1073/pnas.2100225118 .
doi: 10.1073/pnas.2100225118 pubmed: 33785602 pmcid: 8040795
Cui S, et al. Nuclear cGAS functions non-canonically to enhance antiviral immunity via recruiting methyltransferase Prmt5. Cell Rep. 2020;33:108490. https://doi.org/10.1016/j.celrep.2020.108490 .
doi: 10.1016/j.celrep.2020.108490 pubmed: 33296647
Cao D, et al. The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING. Sci Signal. 2023;16:eadd0082. https://doi.org/10.1126/scisignal.add0082 .
doi: 10.1126/scisignal.add0082 pubmed: 37130168
Su J, et al. SARS-CoV-2 ORF3a inhibits cGAS–STING-mediated autophagy flux and antiviral function. J Med Virol. 2023;95:e28175.
doi: 10.1002/jmv.28175 pubmed: 36163413
Jiao P, et al. SARS-CoV-2 nonstructural protein 6 triggers endoplasmic reticulum stress-induced autophagy to degrade STING1. Autophagy. 2023;19:3113–31. https://doi.org/10.1080/15548627.2023.2238579 .
doi: 10.1080/15548627.2023.2238579 pubmed: 37482689 pmcid: 10621274
Han L, et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. J Med Virol. 2021;93:5376–89. https://doi.org/10.1002/jmv.27050 .
doi: 10.1002/jmv.27050 pubmed: 33913550 pmcid: 8242602
Rui Y, et al. Unique and complementary suppression of cGAS–STING and RNA sensing-triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduct Target Ther. 2021;6:123.
doi: 10.1038/s41392-021-00515-5 pubmed: 33723219 pmcid: 7958565
Deng J, et al. SARS-CoV-2 NSP7 inhibits type I and III IFN production by targeting the RIG-I/MDA5, TRIF, and STING signaling pathways. J Med Virol. 2023;95:e28561. https://doi.org/10.1002/jmv.28561 .
doi: 10.1002/jmv.28561 pubmed: 36755358
Deng J, et al. SARS-CoV-2 NSP8 suppresses type I and III IFN responses by modulating the RIG-I/MDA5, TRIF, and STING signaling pathways. J Med Virol. 2023;95:e28680. https://doi.org/10.1002/jmv.28680 .
doi: 10.1002/jmv.28680 pubmed: 36929724
Humphries F, et al. A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Sci Immunol. 2021;6:eabi9002. https://doi.org/10.1126/sciimmunol.abi9002 .
doi: 10.1126/sciimmunol.abi9002 pubmed: 34010139 pmcid: 8158975
Ji X, et al. Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol. 2013;20:1304–9. https://doi.org/10.1038/nsmb.2692 .
doi: 10.1038/nsmb.2692 pubmed: 24141705 pmcid: 3833828
Yan Y, Tang Y-D, Zheng C. When cyclin-dependent kinases meet viral infections, including SARS-CoV-2. J Med Virol. 2022;94:2962–8. https://doi.org/10.1002/jmv.27719 .
doi: 10.1002/jmv.27719 pubmed: 35288942 pmcid: 9088476
Gupta RK, Mlcochova P. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral spread. EMBO J. 2022;41:e111653. https://doi.org/10.15252/embj.2022111653 .
doi: 10.15252/embj.2022111653 pubmed: 36161661 pmcid: 9539236
Khan A, Sergi C. SAMHD1 as the potential link between SARS-CoV-2 infection and neurological complications. Front Neurol. 2020;11:562913. https://doi.org/10.3389/fneur.2020.562913 .
doi: 10.3389/fneur.2020.562913 pubmed: 33101175 pmcid: 7546029
Bowen NE, et al. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. J Biol Chem. 2021. https://doi.org/10.1016/j.jbc.2021.101170 .
doi: 10.1016/j.jbc.2021.101170 pubmed: 34492268 pmcid: 8497992
Yu CH, et al. Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification. Nat Commun. 2021;12:731. https://doi.org/10.1038/s41467-021-21023-8 .
doi: 10.1038/s41467-021-21023-8 pubmed: 33531504 pmcid: 7854603
Maelfait J, Bridgeman A, Benlahrech A, Cursi C, Rehwinkel J. Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1. Cell Rep. 2016;16:1492–501. https://doi.org/10.1016/j.celrep.2016.07.002 .
doi: 10.1016/j.celrep.2016.07.002 pubmed: 27477283 pmcid: 4978700
Martinez-Lopez A, et al. SAMHD1 deficient human monocytes autonomously trigger type I interferon. Mol Immunol. 2018;101:450–60. https://doi.org/10.1016/j.molimm.2018.08.005 .
doi: 10.1016/j.molimm.2018.08.005 pubmed: 30099227 pmcid: 6258080
Espada CE, et al. SAMHD1 impairs type I interferon induction through the MAVS, IKKε, and IRF7 signaling axis during viral infection. J Biol Chem. 2023;299:104925. https://doi.org/10.1016/j.jbc.2023.104925 .
doi: 10.1016/j.jbc.2023.104925 pubmed: 37328105 pmcid: 10404699
Oo A, et al. Elimination of Aicardi–Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. J Biol Chem. 2022. https://doi.org/10.1016/j.jbc.2022.101635 .
doi: 10.1016/j.jbc.2022.101635 pubmed: 35085552 pmcid: 8786443
Berri F, et al. Early plasma interferon-β levels as a predictive marker of COVID-19 severe clinical events in adult patients. J Med Virol. 2023;95: e28361. https://doi.org/10.1002/jmv.28361 .
doi: 10.1002/jmv.28361 pubmed: 36451263
Kwan JYY, et al. Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients. Sci Rep. 2021;11:4533. https://doi.org/10.1038/s41598-021-83366-y .
doi: 10.1038/s41598-021-83366-y pubmed: 33633121 pmcid: 7907391
Lee JH. Treatment mechanism of immune triad from the repurposing drug against COVID-19. Trans Med Aging. 2023;7:33–45. https://doi.org/10.1016/j.tma.2023.06.005 .
doi: 10.1016/j.tma.2023.06.005
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53:425–35. https://doi.org/10.1016/j.jmii.2020.04.015 .
doi: 10.1016/j.jmii.2020.04.015 pubmed: 32414646 pmcid: 7201239
Kumar S, et al. Racial health disparity and COVID-19. J Neuroimmune Pharmacol. 2021;16:729–42. https://doi.org/10.1007/s11481-021-10014-7 .
doi: 10.1007/s11481-021-10014-7 pubmed: 34499313 pmcid: 8426163
Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2021;16:263–70. https://doi.org/10.1080/15592294.2020.1796896 .
doi: 10.1080/15592294.2020.1796896 pubmed: 32686577
Lei Y, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2. Circ Res. 2021;128:1323–6. https://doi.org/10.1161/CIRCRESAHA.121.318902 .
doi: 10.1161/CIRCRESAHA.121.318902 pubmed: 33784827 pmcid: 8091897
Choudhury A, Das NC, Patra R, Mukherjee S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J Med Virol. 2021;93:2476–86. https://doi.org/10.1002/jmv.26776 .
doi: 10.1002/jmv.26776 pubmed: 33404091
Patra R, Chandra Das N, Mukherjee S. Targeting human TLRs to combat COVID-19: A solution? J Med Virol. 2021;93:615–7. https://doi.org/10.1002/jmv.26387 .
doi: 10.1002/jmv.26387 pubmed: 32749702
Zhao Y, et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res. 2021;31:818–20. https://doi.org/10.1038/s41422-021-00495-9 .
doi: 10.1038/s41422-021-00495-9 pubmed: 33742149 pmcid: 7975240
Shirvaliloo M. The unfavorable clinical outcome of COVID-19 in smokers is mediated by H3K4me3, H3K9me3 and H3K27me3 histone marks. Epigenomics. 2022;14:153–62. https://doi.org/10.2217/epi-2021-0476 .
doi: 10.2217/epi-2021-0476 pubmed: 35021853
Kronstein-Wiedemann R, et al. SARS-CoV-2 infects red blood cell progenitors and dysregulates hemoglobin and iron metabolism. Stem Cell Reviews and Reports. 2022;18:1809–21. https://doi.org/10.1007/s12015-021-10322-8 .
doi: 10.1007/s12015-021-10322-8 pubmed: 35181867 pmcid: 8856880
Gonzalez JJI, et al. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. eBio. 2023. https://doi.org/10.1128/mbio.00225-23 .
doi: 10.1128/mbio.00225-23
Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80. https://doi.org/10.1016/j.cell.2020.02.052 .
doi: 10.1016/j.cell.2020.02.052 pubmed: 32142651 pmcid: 7102627
Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16:2029–33. https://doi.org/10.2217/fon-2020-0571 .
doi: 10.2217/fon-2020-0571 pubmed: 32658591
Kyrou I, Randeva HS, Spandidos DA, Karteris E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Target Ther. 2021;6:21. https://doi.org/10.1038/s41392-020-00460-9 .
doi: 10.1038/s41392-020-00460-9 pubmed: 33462185 pmcid: 7812344
Davies J, et al. Neuropilin1 as a new potential SARSCoV2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID19. Mol Med Rep. 2020;22:4221–6. https://doi.org/10.3892/mmr.2020.11510 .
doi: 10.3892/mmr.2020.11510 pubmed: 33000221 pmcid: 7533503
Khan M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184:5932-5949.e5915. https://doi.org/10.1016/j.cell.2021.10.027 .
doi: 10.1016/j.cell.2021.10.027 pubmed: 34798069 pmcid: 8564600
Yong SJ. Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem Neurosci. 2021;12:573–80. https://doi.org/10.1021/acschemneuro.0c00793 .
doi: 10.1021/acschemneuro.0c00793 pubmed: 33538586
Group, S. C.-G. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383:1522–34.
doi: 10.1056/NEJMoa2020283
Li Y, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23:101160. https://doi.org/10.1016/j.isci.2020.101160 .
doi: 10.1016/j.isci.2020.101160 pubmed: 32405622 pmcid: 7219414
Zeberg H, Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci. 2021;118: e2026309118. https://doi.org/10.1073/pnas.2026309118 .
doi: 10.1073/pnas.2026309118 pubmed: 33593941 pmcid: 7936282
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate lymphoid cells in autoimmune diseases. Front Immunol. 2021;12: 789788. https://doi.org/10.3389/fimmu.2021.789788 .
doi: 10.3389/fimmu.2021.789788 pubmed: 35069567
Meininger I, et al. Tissue-specific features of innate lymphoid cells. Trends Immunol. 2020;41:902–17. https://doi.org/10.1016/j.it.2020.08.009 .
doi: 10.1016/j.it.2020.08.009 pubmed: 32917510
Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323:2329–30. https://doi.org/10.1001/jama.2020.6825 .
doi: 10.1001/jama.2020.6825 pubmed: 32329799
Lucchese G, et al. Anti-neuronal antibodies against brainstem antigens are associated with COVID-19. EBioMedicine. 2022;83:104211. https://doi.org/10.1016/j.ebiom.2022.104211 .
doi: 10.1016/j.ebiom.2022.104211 pubmed: 35963198 pmcid: 9365397
Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet. 2022;30:915–21. https://doi.org/10.1038/s41431-022-01141-7 .
doi: 10.1038/s41431-022-01141-7 pubmed: 35760904 pmcid: 9244541
Zhang J, et al. Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat Immunol. 2022;23:237–50. https://doi.org/10.1038/s41590-021-01097-8 .
doi: 10.1038/s41590-021-01097-8 pubmed: 35075279
Spits H, Mjösberg J. Heterogeneity of type 2 innate lymphoid cells. Nat Rev Immunol. 2022;22:701–12. https://doi.org/10.1038/s41577-022-00704-5 .
doi: 10.1038/s41577-022-00704-5 pubmed: 35354980 pmcid: 8966870
Kawano T, et al. T cell infiltration into the brain triggers pulmonary dysfunction in murine Cryptococcus-associated IRIS. Nat Commun. 2023;14:3831.
doi: 10.1038/s41467-023-39518-x pubmed: 37380639 pmcid: 10307837
Dangarembizi R, Drummond R. Immune-related neurodegeneration in the midbrain causes pulmonary dysfunction in murine cryptococcal IRIS. Trends Neurosci. 2023;46:1003–4. https://doi.org/10.1016/j.tins.2023.09.005 .
doi: 10.1016/j.tins.2023.09.005 pubmed: 37806831
Örd M, Faustova I, Loog M. The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Sci Rep. 2020;10:16944.
doi: 10.1038/s41598-020-74101-0 pubmed: 33037310 pmcid: 7547067
Sergi CM, Chiu B. Targeting NLRP3 inflammasome in an animal model for Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Med Virol. 2021;93:669–70. https://doi.org/10.1002/jmv.26461 .
doi: 10.1002/jmv.26461 pubmed: 32841451
Shirato K, Kizaki T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon. 2021;7:e06187. https://doi.org/10.1016/j.heliyon.2021.e06187 .
doi: 10.1016/j.heliyon.2021.e06187 pubmed: 33644468 pmcid: 7887388
Cai Y, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369:1586–92. https://doi.org/10.1126/science.abd4251 .
doi: 10.1126/science.abd4251 pubmed: 32694201
Sahin U, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021;595:572–7. https://doi.org/10.1038/s41586-021-03653-6 .
doi: 10.1038/s41586-021-03653-6 pubmed: 34044428
Tao K, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22:757–73.
doi: 10.1038/s41576-021-00408-x pubmed: 34535792 pmcid: 8447121
Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021;554:94–8. https://doi.org/10.1016/j.bbrc.2021.03.100 .
doi: 10.1016/j.bbrc.2021.03.100 pubmed: 33789211 pmcid: 7988450
Young MJ, O’Hare M, Matiello M, Schmahmann JD. Creutzfeldt-Jakob disease in a man with COVID-19: SARS-CoV-2-accelerated neurodegeneration? Brain Behav Immun. 2020;89:601–3. https://doi.org/10.1016/j.bbi.2020.07.007 .
doi: 10.1016/j.bbi.2020.07.007 pubmed: 32681865 pmcid: 7362815
Montezano AC, et al. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep. 2023;13:14086. https://doi.org/10.1038/s41598-023-41115-3 .
doi: 10.1038/s41598-023-41115-3 pubmed: 37640791 pmcid: 10462711
Liu X, et al. SARS-CoV-2 spike protein–induced cell fusion activates the cGAS–STING pathway and the interferon response. Sci Signal. 2022;15:eabg8744.
doi: 10.1126/scisignal.abg8744 pubmed: 35412852
Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 spike protein. J Am Chem Soc. 2022;144:8945–50. https://doi.org/10.1021/jacs.2c03925 .
doi: 10.1021/jacs.2c03925 pubmed: 35579205 pmcid: 9136918
Prabhakaran M, et al. Adjuvanted SARS-CoV-2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Sci Trans Med. 2024;16:eadd5960. https://doi.org/10.1126/scitranslmed.add5960 .
doi: 10.1126/scitranslmed.add5960
Yao L, et al. Omicron subvariants escape antibodies elicited by vaccination and BA. 2.2 infection. Lancet Infect Dis. 2022;22:1116–7.
doi: 10.1016/S1473-3099(22)00410-8 pubmed: 35738299 pmcid: 9212811
Tyrkalska SD, et al. Differential proinflammatory activities of Spike proteins of SARS-CoV-2 variants of concern. Sci Adv. 2022;8:eabo0732. https://doi.org/10.1126/sciadv.abo0732 .
doi: 10.1126/sciadv.abo0732 pubmed: 36112681 pmcid: 9481140
Szebeni J, et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat Nanotechnol. 2022;17:337–46. https://doi.org/10.1038/s41565-022-01071-x .
doi: 10.1038/s41565-022-01071-x pubmed: 35393599
Fink DL, et al. HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65. Retrovirology. 2022;19:2. https://doi.org/10.1186/s12977-021-00586-w .
doi: 10.1186/s12977-021-00586-w pubmed: 35073912 pmcid: 8785589
Troili F, et al. Perivascular unit: this must be the place the anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat. 2020;14:17. https://doi.org/10.3389/fnana.2020.00017 .
doi: 10.3389/fnana.2020.00017 pubmed: 32372921 pmcid: 7177187
Baig AM. Computing the effects of SARS-CoV-2 on respiration regulatory mechanisms in COVID-19. ACS Chem Neurosci. 2020;11:2416–21. https://doi.org/10.1021/acschemneuro.0c00349 .
doi: 10.1021/acschemneuro.0c00349 pubmed: 32600045
Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir Res. 2020;21:198. https://doi.org/10.1186/s12931-020-01462-5 .
doi: 10.1186/s12931-020-01462-5 pubmed: 32723327 pmcid: 7385717
Josselyn SA, Tonegawa S. Memory engrams: recalling the past and imagining the future. Science. 2020. https://doi.org/10.1126/science.aaw4325 .
doi: 10.1126/science.aaw4325 pubmed: 31896692 pmcid: 7577560
Koren T, et al. Insular cortex neurons encode and retrieve specific immune responses. Cell. 2021;184:5902-5915.e5917. https://doi.org/10.1016/j.cell.2021.10.013 .
doi: 10.1016/j.cell.2021.10.013 pubmed: 34752731
Gogolla N. The brain remembers where and how inflammation struck. Cell. 2021;184:5851–3. https://doi.org/10.1016/j.cell.2021.11.002 .
doi: 10.1016/j.cell.2021.11.002 pubmed: 34822782
Zhang L, et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6:337. https://doi.org/10.1038/s41392-021-00719-9 .
doi: 10.1038/s41392-021-00719-9 pubmed: 34489403 pmcid: 8419672
Schwabenland M, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54:1594-1610.e1511. https://doi.org/10.1016/j.immuni.2021.06.002 .
doi: 10.1016/j.immuni.2021.06.002 pubmed: 34174183 pmcid: 8188302
Sepehrinezhad A, Gorji A, Sahab Negah S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology. 2021. https://doi.org/10.1007/s10787-021-00845-4 .
doi: 10.1007/s10787-021-00845-4 pubmed: 34241783 pmcid: 8266993
Lee M-H, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2020;384:481–3. https://doi.org/10.1056/nejmc2033369 .
doi: 10.1056/nejmc2033369 pubmed: 33378608
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41:2657–69. https://doi.org/10.1007/s10072-020-04575-3 .
doi: 10.1007/s10072-020-04575-3 pubmed: 32725449 pmcid: 7385206
Finsterer J, Scorza FA. Clinical and pathophysiologic spectrum of neuro-COVID. Mol Neurobiol. 2021;58:3787–91. https://doi.org/10.1007/s12035-021-02383-0 .
doi: 10.1007/s12035-021-02383-0 pubmed: 33829393 pmcid: 8026389
Fu J, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 2020;47(6):4383–92. https://doi.org/10.1007/s11033-020-05478-4 .
doi: 10.1007/s11033-020-05478-4 pubmed: 32410141 pmcid: 7224351
Ortega-de San Luis C, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. Curr Biol. 2023;33:5368–80. https://doi.org/10.1016/j.cub.2023.10.074 .
doi: 10.1016/j.cub.2023.10.074 pubmed: 37992719
Hernandez-Lopez JM, et al. Neuronal progenitors of the dentate gyrus express the SARS-CoV-2 cell receptor during migration in the developing human hippocampus. Cell Mol Life Sci. 2023;80:140. https://doi.org/10.1007/s00018-023-04787-8 .
doi: 10.1007/s00018-023-04787-8 pubmed: 37149825 pmcid: 10164240
Yang R-C, et al. SARS-CoV-2 productively infects human brain microvascular endothelial cells. J Neuroinflammation. 2022;19:149. https://doi.org/10.1186/s12974-022-02514-x .
doi: 10.1186/s12974-022-02514-x pubmed: 35705998 pmcid: 9198209
Bar-On L, Dekel H, Aftalion M, Chitlaru T, Erez N. Essential role for Batf3-dependent dendritic cells in regulating CD8 T-cell response during SARS-CoV-2 infection. PLoS ONE. 2023;18: e0294176. https://doi.org/10.1371/journal.pone.0294176 .
doi: 10.1371/journal.pone.0294176 pubmed: 38150441 pmcid: 10752548
Tamari M, et al. Sensory neurons promote immune homeostasis in the lung. Cell. 2024;187:44-61.e17. https://doi.org/10.1016/j.cell.2023.11.027 .
doi: 10.1016/j.cell.2023.11.027 pubmed: 38134932
Mudd PA, et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020;6:eabe3024. https://doi.org/10.1126/sciadv.abe3024 .
doi: 10.1126/sciadv.abe3024 pubmed: 33187979 pmcid: 7725462
Monneret G, et al. COVID-19: What type of cytokine storm are we dealing with? J Med Virol. 2021;93:197–8. https://doi.org/10.1002/jmv.26317 .
doi: 10.1002/jmv.26317 pubmed: 32681651
Horkowitz AP, et al. Acetylcholine regulates pulmonary pathology during viral infection and recovery. ImmunoTargets and Therapy. 2020;9:333–50. https://doi.org/10.2147/ITT.S279228 .
doi: 10.2147/ITT.S279228 pubmed: 33365281 pmcid: 7751717
Erttmann SF, et al. The gut microbiota prime systemic antiviral immunity via the cGAS–STING-IFN-I axis. Immunity. 2022;55:847-861.e810. https://doi.org/10.1016/j.immuni.2022.04.006 .
doi: 10.1016/j.immuni.2022.04.006 pubmed: 35545033
Gabanyi I, et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science. 2022;376:eabj3986.
doi: 10.1126/science.abj3986 pubmed: 35420957
Liu H, Wang F, Cao Y, Dang Y, Ge B. The multifaceted functions of cGAS. J Mol Cell Biol. 2022. https://doi.org/10.1093/jmcb/mjac031 .
doi: 10.1093/jmcb/mjac031 pubmed: 36190325 pmcid: 10174720
Shahbaz MA, et al. Human-derived air–liquid interface cultures decipher Alzheimer’s disease–SARS-CoV-2 crosstalk in the olfactory mucosa. J Neuroinflammation. 2023;20:299. https://doi.org/10.1186/s12974-023-02979-4 .
doi: 10.1186/s12974-023-02979-4 pubmed: 38098019 pmcid: 10722731
Lee JH, Kanwar B, Lee CJ, Sergi C, Coleman MD. Dapsone is an anticatalysis for Alzheimer’s disease exacerbation. iScience. 2022. https://doi.org/10.1016/j.isci.2022.104274 .
doi: 10.1016/j.isci.2022.104274 pubmed: 36713260 pmcid: 9881047
Lee JH, et al. Bronchitis, COPD, and pneumonia after viral endemic of patients with leprosy on Sorok Island in South Korea. Naunyn Schmiedebergs Arch Pharmacol. 2023. https://doi.org/10.1007/s00210-023-02407-7 .
doi: 10.1007/s00210-023-02407-7 pubmed: 38103059 pmcid: 9918834
Shim J, Park EK, Kim RK, Lee KH, Shin MR, Kwon Dh. the suspected coronavirus disease 2019 reinfection cases and vaccine effectiveness, The Republic of Korea. Public Health Weekly Rep. 2023;16:1504–20. https://doi.org/10.56786/PHWR.2023.16.44.2 .
doi: 10.56786/PHWR.2023.16.44.2
Axenhus M, Frederiksen KS, Zhou RZ, Waldemar G, Winblad B. The impact of the COVID-19 pandemic on mortality in people with dementia without COVID-19: a systematic review and meta-analysis. BMC Geriatr. 2022;22:878. https://doi.org/10.1186/s12877-022-03602-6 .
doi: 10.1186/s12877-022-03602-6 pubmed: 36402953 pmcid: 9675075
Chen R, et al. Excess mortality with Alzheimer disease and related dementias as an underlying or contributing cause during the COVID-19 pandemic in the US. JAMA Neurol. 2023. https://doi.org/10.1001/jamaneurol.2023.2226 .
doi: 10.1001/jamaneurol.2023.2226 pubmed: 37930669 pmcid: 10628834
Lee, J. h. et al. (Research Square, 2024).
Lee JH, et al. Basic implications on three pathways associated with SARS-CoV-2. Biomed J. 2024. https://doi.org/10.1016/j.bj.2024.100766 .
doi: 10.1016/j.bj.2024.100766 pubmed: 39122187

Auteurs

Jong Hoon Lee (JH)

Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. science@research.re.kr.
Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea. science@research.re.kr.

Consolato Sergi (C)

Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.

Richard E Kast (RE)

IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA.

Badar A Kanwar (BA)

Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA.

Jean Bourbeau (J)

Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada.

Sangsuk Oh (S)

Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea.

Mun-Gi Sohn (MG)

Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea.

Chul Joong Lee (CJ)

Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea.

Michael D Coleman (MD)

College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK. m.d.coleman@aston.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH