Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies.

autoimmunity fc‐receptors immunoglobulin G intravenous immunoglobulin resolution of inflammation

Journal

Immunological reviews
ISSN: 1600-065X
Titre abrégé: Immunol Rev
Pays: England
ID NLM: 7702118

Informations de publication

Date de publication:
27 Sep 2024
Historique:
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: aheadofprint

Résumé

Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.

Identifiants

pubmed: 39340138
doi: 10.1111/imr.13404
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : CRC1526-A07
Organisme : Deutsche Forschungsgemeinschaft
ID : FOR2886-B02
Organisme : Deutsche Forschungsgemeinschaft
ID : FOR2953-P03
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR369-C01

Informations de copyright

© 2024 The Author(s). Immunological Reviews published by John Wiley & Sons Ltd.

Références

Ludwig RJ, Vanhoorelbeke K, Leypoldt F, et al. Mechanisms of autoantibody‐induced pathology. Front Immunol. 2017;8:603.
Nimmerjahn F, Ravetch JV. The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med. 2007;204(1):11‐15.
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176‐189.
Bayry J, Negi VS, Kaveri SV. Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(6):349‐359.
Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34‐47.
Imbach P, Barandun S, d'Apuzzo V, et al. High‐dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981;1(8232):1228‐1231.
Imbach P, Morell A. Idiopathic thrombocytopenic purpura (ITP): immunomodulation by intravenous immunoglobulin (IVIg). Int Rev Immunol. 1989;5(2):181‐188.
Gelfand EW. Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol. 2006;6(4):592‐599.
Galeotti C, Kaveri SV, Bayry J. IVIG‐mediated effector functions in autoimmune and inflammatory diseases. Int Immunol. 2017;29(11):491‐498.
Danieli MG, Piga MA, Paladini A, et al. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol. 2021;94(5):e13101.
Sung N, Han AR, Park CW, et al. Intravenous immunoglobulin G in women with reproductive failure: the Korean Society for Reproductive Immunology practice guidelines. Clin Exp Reprod Med. 2017;44(1):1‐7.
Walgaard C, Jacobs BC, Lingsma HF, et al. Second intravenous immunoglobulin dose in patients with Guillain‐Barré syndrome with poor prognosis (SID‐GBS): a double‐blind, randomised, placebo‐controlled trial. The Lancet Neurology. 2021;20(4):275‐283.
Lehmann HC, Hartung HP. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune‐mediated neuropathies. J Neuroimmunol. 2011;231(1–2):61‐69.
Yang A, Uhlenhake E, Murrell DF. Pemphigoid gestationis and intravenous immunoglobulin therapy. Int J Women's Dermatol. 2018;4(3):166‐169.
Maglie R, Hertl M. Pharmacological advances in pemphigoid. Curr Opin Pharmacol. 2019;46:34‐43.
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The human FcgammaRII (CD32) family of leukocyte FcR in health and disease. Front Immunol. 2019;10:464.
Daeron M. Fc receptors as adaptive immunoreceptors. Curr Top Microbiol Immunol. 2014;382:131‐164.
Pincetic A, Bournazos S, DiLillo DJ, et al. Type I and type II fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15(8):707‐716.
Nimmerjahn F, Ravetch JV. Anti‐inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26(1):513‐533.
Hargreaves CE, Rose‐Zerilli MJ, Machado LR, et al. Fcγ receptors: genetic variation, function, and disease. Immunol Rev. 2015;268(1):6‐24.
Junker F, Gordon J, Qureshi O. Fc gamma receptors and their role in antigen uptake, presentation, and T cell activation. Front Immunol. 2020;11:1393.
Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in FcγRII‐deficient mice. Nature. 1996;379(6563):346‐349.
Nakamura A, Yuasa T, Ujike A, et al. Fcγ receptor IIB–deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med. 2000;191(5):899‐906.
Yuasa T, Kubo S, Yoshino T, et al. Deletion of Fcγ receptor IIB renders H‐2b mice susceptible to collagen‐induced arthritis. J Exp Med. 1999;189(1):187‐194.
Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV. Modulation of immune complex–induced inflammation in vivo by the coordinate expression of activation and inhibitory fc receptors. J Exp Med. 1999;189(1):179‐185.
Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell. 1994;76(3):519‐529.
Nimmerjahn F, Ravetch JV. Divergent immunoglobulin G subclass activity through selective fc receptor binding. Science. 2005;310(5753):1510‐1512.
Vorsatz C, Friedrich N, Nimmerjahn F, Biburger M. There is strength in numbers: quantitation of fc gamma receptors on murine tissue‐resident macrophages. Int J Mol Sci. 2021;22(22):12172.
Kerntke C, Nimmerjahn F, Biburger M. There is (scientific) strength in numbers: a comprehensive quantitation of fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 2020;11:118.
Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity. 2005;23(1):41‐51.
Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family members. Immunity. 2006;24(1):19‐28.
Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J Immunol. 2013;190(8):4315‐4323.
Bruhns P, Iannascoli B, England P, et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood, the Journal of the American Society of Hematology. 2009;113(16):3716‐3725.
Ferrara C, Grau S, Jäger C, et al. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc Natl Acad Sci. 2011;108(31):12669‐12674.
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol. 2023;24(8):1244‐1255.
Ji H, Ohmura K, Mahmood U, et al. Arthritis critically dependent on innate immune system players. Immunity. 2002;16(2):157‐168.
Kaneko Y, Nimmerjahn F, Ravetch JV. Anti‐inflammatory activity of immunoglobulin G resulting from fc sialylation. Science. 2006;313(5787):670‐673.
Lewis BJ, Ville J, Blacquiere M, et al. Using the K/BxN mouse model of endogenous, chronic, rheumatoid arthritis for the evaluation of potential immunoglobulin‐based therapeutic agents, including IVIg and fc‐μTP‐L309C, a recombinant IgG1 fc hexamer. BMC Immunol. 2019;20:1‐10.
Qureshi O, Rowley T, Junker F, et al. Multivalent fc γ‐receptor engagement by a hexameric fc‐fusion protein triggers fc γ‐receptor internalisation and modulation of fc γ‐receptor functions. Sci Rep. 2017;7(1):17049.
Spirig R, Campbell IK, Koernig S, et al. rIgG1 fc hexamer inhibits antibody‐mediated autoimmune disease via effects on complement and FcγRs. J Immunol. 2018;200(8):2542‐2553.
Tradtrantip L, Felix CM, Spirig R, Morelli AB, Verkman A. Recombinant IgG1 fc hexamers block cytotoxicity and pathological changes in experimental in vitro and rat models of neuromyelitis optica. Neuropharmacology. 2018;133:345‐353.
Ortiz DF, Lansing JC, Rutitzky L, et al. Elucidating the interplay between IgG‐fc valency and FcγR activation for the design of immune complex inhibitors. Sci Transl Med. 2016;8(365):365ra158.
Washburn N, Schwab I, Ortiz D, et al. Controlled tetra‐fc sialylation of IVIg results in a drug candidate with consistent enhanced anti‐inflammatory activity. Proc Natl Acad Sci. 2015;112(11):E1297‐E1306.
Roopenian DC, Akilesh S. FcRn: the neonatal fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715‐725.
Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal fc receptor. Nat Rev Immunol. 2023;23(7):415‐432.
Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I–related receptor FcRn. Annu Rev Immunol. 2000;18(1):739‐766.
Blumberg L, Humphries J, Sa J, et al. Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex–mediated immune responses. Sci Adv. 2019;5(12):eaax9586.
Hubbard JJ, Pyzik M, Rath T, et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex‐driven autoimmunity. J Exp Med. 2020;217(10):1‐14.
Baker K, Rath T, Flak MB, et al. Neonatal fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity. 2013;39(6):1095‐1107.
Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific fc receptors. J Exp Med. 2006;203(3):789.
Yamamoto M, Kobayashi K, Ishikawa Y, et al. The inhibitory effects of intravenous administration of rabbit immunoglobulin G on airway inflammation are dependent upon Fcγ receptor IIb on CD11c+ dendritic cells in a murine model. Clin Exp Immunol. 2010;162(2):315‐324.
Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol. 2017;13(10):621‐630.
Imbach P, d'Apuzzo V, Hirt A, et al. High‐dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981;317(8232):1228‐1231.
Debré M, Griscelli C, Bonnet M, et al. Infusion of Fcγ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 1993;342(8877):945‐949.
Hsu C‐H, Chen M‐R, Hwang F‐Y, Kao H‐A, Hung H‐Y, Hsu C‐H. Efficacy of plasmin‐treated intravenous gamma‐globulin for therapy of Kawasaki syndrome. Pediatr Infect Dis J. 1993;12(6):509‐512.
Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC. Treatment of refractory immune thrombocytopenic purpura with an anti‐Fcγ‐receptor antibody. N Engl J Med. 1986;314(19):1236‐1239.
Bussel JB, Kimberly RP, Inman RD, et al. Intravenous gammaglobulin treatment of chronic idiopathic thrombocytopenic purpura. Blood. 1983;62(2):480‐486.
Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high‐dose intravenous gamma globulin. N Engl J Med. 1982;306(21):1254‐1258.
Kimberly RP, Salmon JE, Bussel JB, Crow MK, Hilgartner MW. Modulation of mononuclear phagocyte function by intravenous gamma‐globulin. J Immunol. 1984;132(2):745‐750.
Machino Y, Suzuki E, Higurashi S, et al. Chemically dimerized intravenous immunoglobulin has potent ameliorating activity in a mouse immune thrombocytopenic purpura model. Biochem Biophys Res Commun. 2012;418(4):748‐753.
Czajkowsky DM, Andersen JT, Fuchs A, et al. Developing the IVIG biomimetic, Hexa‐fc, for drug and vaccine applications. Sci Rep. 2015;5(1):9526.
Zuercher AW, Spirig R, Baz Morelli A, Kasermann F. IVIG in autoimmune disease‐potential next generation biologics. Autoimmun Rev. 2016;15(8):781‐785.
Clark AL, Gall SA. Clinical uses of intravenous immunoglobulin in pregnancy. Am J Obstet Gynecol. 1997;176(1 Pt 1):241‐253.
Hansen RJ, Balthasar JP. Intravenous immunoglobulin mediates an increase in anti‐platelet antibody clearance via the FcRn receptor. Thromb Haemost. 2002;88(6):898‐899.
Hansen RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100(6):2087‐2093.
Li N, Zhao M, Hilario‐Vargas J, et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115(12):3440‐3450.
Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti‐inflammatory activity with a recombinant IgG fc. Science. 2008;320(5874):373‐376.
Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti‐inflammatory activity of IVIG. Proc Natl Acad Sci USA. 2008;105(50):19571‐19578.
Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody and T cell‐mediated autoimmune diseases by antiinflammatory IgG fcs requires type II FcRs. Proc Natl Acad Sci USA. 2015;112(18):E2385‐E2394.
Wohner M, Brechtelsbauer S, Friedrich N, et al. Tissue niche occupancy determines the contribution of fetal‐versus bone‐marrow‐derived macrophages to IgG effector functions. Cell Rep. 2024;43(2):113757.
Crow AR, Suppa SJ, Chen X, Mott PJ, Lazarus AH. The neonatal fc receptor (FcRn) is not required for IVIg or anti‐CD44 monoclonal antibody‐mediated amelioration of murine immune thrombocytopenia. Blood. 2011;118(24):6403‐6406.
Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D. The MHC class I‐like fc receptor promotes humorally mediated autoimmune disease. J Clin Invest. 2004;113(9):1328‐1333.
Kasprick A, Hofrichter M, Smith B, et al. Treatment with anti‐neonatal fc receptor (FcRn) antibody ameliorates experimental epidermolysis bullosa acquisita in mice. Br J Pharmacol. 2020;177(10):2381‐2392.
Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23(10):1283‐1288.
Pigors M, Patzelt S, Reichhelm N, et al. Bullous pemphigoid induced by IgG targeting type XVII collagen non‐NC16A/NC15A extracellular domains is driven by fc gamma receptor‐and complement‐mediated effector mechanisms and is ameliorated by neonatal fc receptor blockade. J Pathol. 2024;262(2):161‐174.
Shock A, Humphreys D, Nimmerjahn F. Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: lessons from therapeutic modalities targeting Fcγ receptors. J Allergy Clin Immunol. 2020;146(3):492‐500.
Ward ES, Gelinas D, Dreesen E, et al. Clinical significance of serum albumin and implications of FcRn inhibitor treatment in IgG‐mediated autoimmune disorders. Front Immunol. 2022;13:892534.
Murthy S, Patzelt S, Kunstner A, Busch H, Schmidt E, Sadik CD. Intravenous Ig ameliorates disease in a murine model of anti‐Laminin 332 mucous membrane pemphigoid. J Invest Dermatol. 2024. In press.
Samuelsson A, Towers TL, Ravetch JV. Anti‐inflammatory activity of IVIG mediated through the inhibitory fc receptor. Science. 2001;291(5503):484‐486.
Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony‐stimulating factor‐1‐dependent macrophages are responsible for IVIG protection in antibody‐induced autoimmune disease. Immunity. 2003;18(4):573‐581.
Tackenberg B, Jelcic I, Baerenwaldt A, et al. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA. 2009;106(12):4788‐4792.
Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen‐processing dendritic cells. J Exp Med. 2003;198(2):235‐247.
Lehmann CH, Baranska A, Heidkamp GF, et al. DC subset–specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. J Exp Med. 2017;214(5):1509‐1528.
Boruchov AM, Heller G, Veri M‐C, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG fc receptors on human DCs mediate opposing functions. J Clin Invest. 2005;115(10):2914‐2923.
Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross‐presentation of cellular antigens and the generation of myeloma‐specific killer T cells by dendritic cells. J Exp Med. 2002;195(1):125‐133.
Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest. 2005;115(1):155‐160.
Seeling M, Pöhnl M, Kara S, et al. Immunoglobulin G‐dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin‐1. Immunity. 2023;56(5):1046‐1063. e1047.
Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA‐related antigens due to TLR7 gene duplication. Science. 2006;312(5780):1669‐1672.
Espéli M, Bashford‐Rogers R, Sowerby JM, et al. FcγRIIb differentially regulates pre‐immune and germinal center B cell tolerance in mouse and human. Nat Commun. 2019;10(1):1970.
Segú‐Vergés C, Caño S, Calderón‐Gómez E, et al. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol. 2022;13:901872.
Bayry J, Lacroix‐Desmazes S, Carbonneil C, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood, the Journal of the American Society of Hematology. 2003;101(2):758‐765.
Bayry J, Mouthon L, Kaveri SV. Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease. J Rheumatol. 2012;39(2):450‐451.
Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+ CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood, the Journal of the American Society of Hematology. 2008;111(2):715‐722.
Delfraissy JF, Tchernia G, Laurian Y, Wallon C, Galanaud P, Dormont J. Suppressor cell function after intravenous gammaglobulin treatment in adult chronic idiopathic thrombocytopenic purpura. Br J Haematol. 1985;60(2):315‐322.
Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody‐and T cell‐mediated autoimmune diseases by antiinflammatory IgG fcs requires type II FcRs. Proc Natl Acad Sci. 2015;112(18):E2385‐E2394.
Hsieh L‐E, Song J, Tremoulet AH, Burns JC, Franco A. Intravenous immunoglobulin induces IgG internalization by tolerogenic myeloid dendritic cells that secrete IL‐10 and expand fc‐specific regulatory T cells. Clin Exp Immunol. 2022;208(3):361‐371.
Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13(3):108‐116.
Aubin É, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T‐cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood, the Journal of the American Society of Hematology. 2010;115(9):1727‐1734.
Bayry J, Lacroix‐Desmazes S, Delignat S, et al. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon‐α present in serum from patients with systemic lupus erythematosus. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2003;48(12):3497‐3502.
Ohkuma K, Sasaki T, Kamei S, et al. Modulation of dendritic cell development by immunoglobulin G in control subjects and multiple sclerosis patients. Clin Exp Immunol. 2007;150(3):397‐406.
Yamazaki S, Dudziak D, Heidkamp GF, et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol. 2008;181(10):6923‐6933.
Das M, Karnam A, Stephen‐Victor E, et al. Intravenous immunoglobulin mediates anti‐inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis. 2020;11(1):50.
Kozicky LK, Menzies SC, Hotte N, Madsen KL, Sly LM. Intravenous immunoglobulin (IVIg) or IVIg‐treated macrophages reduce DSS‐induced colitis by inducing macrophage IL‐10 production. Eur J Immunol. 2019;49(8):1251‐1268.
Kozicky LK, Zhao ZY, Menzies SC, et al. Intravenous immunoglobulin skews macrophages to an anti‐inflammatory, IL‐10‐producing activation state. Journal of Leucocyte Biology. 2015;98(6):983‐994.
Saha C, Kothapalli P, Patil V, ManjunathaReddy GB, Kaveri SV, Bayry J. Intravenous immunoglobulin suppresses the polarization of both classically and alternatively activated macrophages. Hum Vaccin Immunother. 2020;16(2):233‐239.
Durandy A, Kaveri S, Kuijpers T, et al. Intravenous immunoglobulins–understanding properties and mechanisms. Clin Exp Immunol. 2009;158(Supplement_1):2‐13.
Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity. Front Immunol. 2015;6:469:1‐10.
Burns JC, Glodé MP. Kawasaki syndrome. Lancet. 2004;364(9433):533‐544.
Burns J, Song Y, Bujold M, et al. Immune‐monitoring in Kawasaki disease patients treated with infliximab and intravenous immunoglobulin. Clin Exp Immunol. 2013;174(3):337‐344.
Franco A, Touma R, Song Y, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity. 2014;47(2):95‐104.
Kao D, Lux A, Schaffert A, Lang R, Altmann F, Nimmerjahn F. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur J Immunol. 2017;47(12):2070‐2079.
Wuhrer M, Stam JC, van de Geijn FE, et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics. 2007;7(22):4070‐4081.
Zaytseva OO, Seeling M, Kristic J, Lauc G, Pezer M, Nimmerjahn F. Fc‐linked IgG N‐glycosylation in FcgammaR Knock‐out mice. Front Cell Dev Biol. 2020;8:67.
Zhao Y, Raidas S, Mao Y, Li N. High‐throughput glycan profiling of human serum IgG subclasses using parallel reaction monitoring peptide bond fragmentation of Glycopeptides and microflow LC‐MS. J Proteome Res. 2024;23(2):585‐595.
Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25(1):21‐50.
Schwab I, Biburger M, Krönke G, Schett G, Nimmerjahn F. IVI g‐mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR 1. Eur J Immunol. 2012;42(4):826‐830.
Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44(5):1444‐1453.
Bayry J, Ahmed EA, Toscano‐Rivero D, et al. Intravenous immunoglobulin: mechanism of action in autoimmune and inflammatory conditions. The Journal of Allergy and Clinical Immunology: In Pract. 2023;11(6):1688‐1697.
Zhang G, Massaad CA, Gao T, et al. Sialylated intravenous immunoglobulin suppress anti‐ganglioside antibody mediated nerve injury. Exp Neurol. 2016;282:49‐55.
Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature. 2011;475(7354):110‐113.
Choi H, Yang S‐W, Joo J‐S, et al. Sialylated IVIg binding to DC‐SIGN+ Hofbauer cells induces immune tolerance through the caveolin‐1/NF‐kB pathway and IL‐10 secretion. Clin Immunol. 2023;246:109215.
Tanigaki K, Sacharidou A, Peng J, et al. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity‐induced insulin resistance. J Clin Invest. 2018;128(1):309‐322.
Ahmed AA, Giddens J, Pincetic A, et al. Structural characterization of anti‐inflammatory immunoglobulin G fc proteins. J Mol Biol. 2014;426(18):3166‐3179.
Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci. 2013;110(24):9868‐9872.
Wang TT, Maamary J, Tan GS, et al. Anti‐HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell. 2015;162(1):160‐169.
Crispin M, Yu X, Bowden TA. Crystal structure of sialylated IgG fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci USA. 2013;110(38):E3544‐E3546.
Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC‐SIGN is independent of antibody glycoform or fc domain. J Mol Biol. 2013;425(8):1253‐1258.
Sharma M, Schoindre Y, Hegde P, et al. Intravenous immunoglobulin‐induced IL‐33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Rep. 2014;4(1):5672.
Lewis BJB, Leontyev D, Neschadim A, Blacquiere M, Branch DR. GM‐CSF and IL‐4 are not involved in IVIG‐mediated amelioration of ITP in mice: a role for IL‐11 cannot be ruled out. Clin Exp Immunol. 2018;193(3):293‐301.
Newland AC, Treleaven JG, Minchinton RM, Waters AH. High‐dose intravenous IgG in adults with autoimmune thrombocytopenia. Lancet. 1983;1(8316):84‐87.
Schwab I, Seeling M, Biburger M, Aschermann S, Nitschke L, Nimmerjahn F. B cells and CD 22 are dispensable for the immediate antiinflammatory activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2012;42(12):3302‐3309.
Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig R, Nimmerjahn F. Broad requirement for terminal sialic acid residues and FcgRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44(5):1444‐1453.
Massoud AH, Yona M, Xue D, et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol. 2014;133(3):853‐863. e855.
Trinath J, Hegde P, Sharma M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase‐2–dependent prostaglandin E2 in human dendritic cells. Blood, the Journal of the American Society of Hematology. 2013;122(8):1419‐1427.
Cousens L, Najafian N, Martin WD, De Groot AS. Tregitope: immunomodulation powerhouse. Hum Immunol. 2014;75(12):1139‐1146.
Dembele M, Tao S, Massoud AH, et al. Tregitopes improve asthma by promoting highly suppressive and antigen‐specific tregs. Front Immunol. 2021;12:634509.
Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB‐deficient mice results from strain‐specific epistasis. Immunity. 2000;13(2):277‐285.
Brown GD. Dectin‐1: a signalling non‐TLR pattern‐recognition receptor. Nat Rev Immunol. 2006;6(1):33‐43.
Mata‐Martínez P, Bergón‐Gutiérrez M, Del Fresno C. Dectin‐1 signaling update: new perspectives for trained immunity. Front Immunol. 2022;13:812148.
Shan M, Gentile M, Yeiser JR, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013;342(6157):447‐453.
Karsten CM, Pandey MK, Figge J, et al. Anti‐inflammatory activity of IgG1 mediated by fc galactosylation and association of FcγRIIB and dectin‐1. Nat Med. 2012;18(9):1401‐1406.
Seeling M, Hillenhoff U, David JP, et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci. 2013;110(26):10729‐10734.
Rowley TF, Peters SJ, Aylott M, et al. Engineered hexavalent fc proteins with enhanced fc‐gamma receptor avidity provide insights into immune‐complex interactions. Communications Biology. 2018;1(1):146.
Zhang X, Owens J, Olsen HS, et al. A recombinant human IgG1 fc multimer designed to mimic the active fraction of IVIG in autoimmunity. JCI Insight. 2019;4(2):1‐19.
Monnet C, Jacque E, de Romeuf C, et al. The dual targeting of FcRn and FcγRs via monomeric fc fragments results in strong inhibition of IgG‐dependent autoimmune pathologies. Front Immunol. 2021;12:728322.
Sneed SL, Reese BB, Laureano AF, et al. An engineered immunomodulatory IgG1 fc suppresses autoimmune inflammation through pathways shared with iv immunoglobulin. J Clin Invest. 2024;134(4):e172980.
Park EI, Manzella SM, Baenziger JU. Rapid clearance of sialylated glycoproteins by the asialoglycoprotein receptor. J Biol Chem. 2003;278(7):4597‐4602.
Pagan JD, Kitaoka M, Anthony RM. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell. 2018;172(3):564‐577 e513.
Albert H, Collin M, Dudziak D, Ravetch JV, Nimmerjahn F. In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass‐dependent manner. Proc Natl Acad Sci USA. 2008;105(39):15005‐15009.
Kao D, Danzer H, Collin M, et al. A monosaccharide residue is sufficient to maintain mouse and human IgG subclass activity and directs IgG effector functions to cellular fc receptors. Cell Rep. 2015;13(11):2376‐2385.
Mihai S, Albert H, Ludwig RJ, et al. In vivo enzymatic modulation of IgG antibodies prevents immune complex‐dependent skin injury. Exp Dermatol. 2017;26(8):691‐696.
Nandakumar KS, Collin M, Olsen A, et al. Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis. Eur J Immunol. 2007;37(10):2973‐2982.
Segelmark M, Bjorck L. Streptococcal enzymes as precision tools against pathogenic IgG autoantibodies in small vessel Vasculitis. Front Immunol. 2019;10:2165.

Auteurs

Marjan Hematianlarki (M)

Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Falk Nimmerjahn (F)

Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Classifications MeSH