Plant extracts and omega-3 supplementation modulate hippocampal oxylipin profile in response to LPS-induced neuroinflammation.

LPS Mice Neuroinflammation Omega-3 Oxylipin Plant extracts

Journal

Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160

Informations de publication

Date de publication:
28 Sep 2024
Historique:
received: 16 08 2024
accepted: 10 09 2024
revised: 06 09 2024
medline: 28 9 2024
pubmed: 28 9 2024
entrez: 28 9 2024
Statut: aheadofprint

Résumé

Neuroinflammation is a protective mechanism but can become harmful if chronic and/or unregulated, leading to neuronal damage and cognitive alterations. Limiting inflammation and promoting resolution could be achieved with nutrients such as grapes and blueberries polyphenols, saffron carotenoids, and omega-3, which have anti-inflammatory and proresolutive properties. This study explored the impact of 18-day supplementation with plant extracts (grape, blueberry and saffron), omega-3 or both (mix) on neuroinflammation induced by lipopolysaccharide (LPS, 250 µg/kg) in 149 mice at different time points post-LPS treatment (30 min, 2 h, 6 h). Inflammatory, oxidative and neuroprotective gene expression; oxylipin quantification; and fatty acid composition were analyzed at each time point. PCA analysis was performed with all these biomarkers. Mix supplementation induced changes in the resolution of inflammation. In fact, the production of proinflammatory mediators in the hippocampus started earlier in the supplemented group than in the LPS group. Pro-resolving mediators were also found in higher quantities in supplemented mice. These changes were associated with increased hippocampal antioxidant status at 6 h post-LPS. These findings suggest that such dietary interventions with plant extracts, and omega-3 could be beneficial in preventing neuroinflammation and, consequently, age-related cognitive decline. Further research is needed to explore the effects of these supplements on chronic inflammation in the context of aging.

Identifiants

pubmed: 39340661
doi: 10.1007/s00011-024-01947-9
pii: 10.1007/s00011-024-01947-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12.
pubmed: 24144733 doi: 10.1016/j.neures.2013.10.004
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90.
pubmed: 30046148 doi: 10.1038/s41574-018-0059-4
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23:194–208.
pubmed: 31959936 pmcid: 7595134 doi: 10.1038/s41593-019-0566-1
Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007;55:412–24.
pubmed: 17203473 doi: 10.1002/glia.20468
Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab off J Int Soc Cereb Blood Flow Metab. 2010;30:459–73.
doi: 10.1038/jcbfm.2009.240
Yang S, Qin C, Hu Z-W, Zhou L-Q, Yu H-H, Chen M, et al. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis. 2021;152:105290.
pubmed: 33556540 doi: 10.1016/j.nbd.2021.105290
Cohen HJ, Pieper CF, Harris T, Rao KMK, Currie MS. The Association of Plasma IL-6 levels with functional disability in Community-Dwelling Elderly. J Gerontol Biol Sci Med Sci. 1997;52A:M201–8.
doi: 10.1093/gerona/52A.4.M201
Mooijaart SP, Sattar N, Trompet S, Lucke J, Stott DJ, Ford I, et al. Circulating interleukin-6 concentration and cognitive decline in old age: the PROSPER study. J Intern Med. 2013;274:77–85.
pubmed: 23414490 doi: 10.1111/joim.12052
Braida D, Sacerdote P, Panerai AE, Bianchi M, Aloisi AM, Iosuè S, et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res. 2004;153:423–9.
pubmed: 15265638 doi: 10.1016/j.bbr.2003.12.018
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.
pubmed: 24899309 pmcid: 4263681 doi: 10.1038/nature13479
Haeggström JZ, Funk CD. Lipoxygenase and Leukotriene pathways: Biochemistry, Biology, and roles in Disease. Chem Rev. 2011;111:5866–98.
pubmed: 21936577 doi: 10.1021/cr200246d
Rey C, Delpech JC, Madore C, Nadjar A, Greenhalgh AD, Amadieu C, et al. Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain Behav Immun. 2019;76:17–27.
pubmed: 30086401 doi: 10.1016/j.bbi.2018.07.025
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol-Heart Circ Physiol. 2017;313:H903–18.
pubmed: 28801523 doi: 10.1152/ajpheart.00201.2017
Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM. Omega-3 polyunsaturated fatty acids and oxylipins in Neuroinflammation and management of Alzheimer Disease. Adv Nutr. 2016;7:905–16.
pubmed: 27633106 pmcid: 5015035 doi: 10.3945/an.116.012187
Caligiuri SPB, Aukema HM, Ravandi A, Pierce GN. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp Gerontol. 2014;59:51–7.
pubmed: 24747581 doi: 10.1016/j.exger.2014.04.005
Wang X, Zhu M, Hjorth E, Cortés-Toro V, Eyjolfsdottir H, Graff C, et al. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement. 2015;11:40.
pubmed: 24530025 doi: 10.1016/j.jalz.2013.12.024
Gallardo-Fernández M, Hornedo-Ortega R, Alonso-Bellido IM, Rodríguez-Gómez JA, Troncoso AM, García-Parrilla MC, et al. Hydroxytyrosol decreases LPS- and α-Synuclein-Induced Microglial Activation in Vitro. Antioxidants. 2019;9:36.
pubmed: 31906130 pmcid: 7022576 doi: 10.3390/antiox9010036
Li H, Xiao C, Wang F, Guo X, Zhou Z, Jiang Y. Blueberry–Mulberry Extract alleviates cognitive impairment, regulates gut metabolites, and inhibits inflammation in aged mice. Foods. 2023;12:860.
pubmed: 36832936 pmcid: 9956669 doi: 10.3390/foods12040860
Abraham J, Johnson RW. Consuming a Diet supplemented with Resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res. 2009;12:445–53.
pubmed: 20041738 pmcid: 2903454 doi: 10.1089/rej.2009.0888
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of Resveratrol. Molecules. 2021;26:229.
pubmed: 33466247 pmcid: 7796143 doi: 10.3390/molecules26010229
Mobasseri M, Ostadrahimi A, Tajaddini A, Asghari S, Barati M, Akbarzadeh M, et al. Effects of saffron supplementation on glycemia and inflammation in patients with type 2 diabetes mellitus: a randomized double-blind, placebo-controlled clinical trial study. Diabetes Metab Syndr Clin Res Rev. 2020;14:527–34.
doi: 10.1016/j.dsx.2020.04.031
Amin B, Abnous K, Motamedshariaty V, Hosseinzadeh H. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. Acad Bras Ciênc. 2014;86:1821–32.
doi: 10.1590/0001-3765201420140067
Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol. 2010;648:110–6.
pubmed: 20854811 doi: 10.1016/j.ejphar.2010.09.003
Yan J, Li T, Ji K, Zhou X, Yao W, Zhou L, et al. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation. J Ethnopharmacol. 2024;333:118408.
pubmed: 38823659 doi: 10.1016/j.jep.2024.118408
Baluchnejadmojarad T, Mohamadi-Zarch S-M, Roghani M. Safranal, an active ingredient of saffron, attenuates cognitive deficits in amyloid β-induced rat model of Alzheimer’s disease: underlying mechanisms. Metab Brain Dis. 2019;34:1747–59.
pubmed: 31422512 doi: 10.1007/s11011-019-00481-6
Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, Meeske K, et al. Fatigue, inflammation, and ω-3 and ω-6 fatty acid intake among breast Cancer survivors. J Clin Oncol. 2012;30:1280–7.
pubmed: 22412148 pmcid: 3341143 doi: 10.1200/JCO.2011.36.4109
Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Grégoire S et al. Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice. Schunck W-H, editor. PLoS ONE. 2012;7:e36861.
Hartung NM, Fischer J, Ostermann AI, Willenberg I, Rund KM, Schebb NH, et al. Impact of food polyphenols on oxylipin biosynthesis in human neutrophils. Biochim Biophys Acta BBA - Mol Cell Biol Lipids. 2019;1864:1536–44.
Nieman DC, Sakaguchi CA, Omar AM, Davis KL, Shaffner CE, Strauch RC, et al. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: a randomized trial. Sci Rep. 2023;13:11976.
pubmed: 37488250 pmcid: 10366094 doi: 10.1038/s41598-023-39269-1
Chataigner M, Martin M, Lucas C, Pallet V, Layé S, Mehaignerie A, et al. Fish Hydrolysate Supplementation containing n-3 long chain polyunsaturated fatty acids and peptides prevents LPS-Induced Neuroinflammation. Nutrients. 2021;13:824.
pubmed: 33801489 pmcid: 7998148 doi: 10.3390/nu13030824
Joffre C, Rey C, Layé S. N-3 polyunsaturated fatty acids and the resolution of Neuroinflammation. Front Pharmacol. 2019;10:1022.
pubmed: 31607902 pmcid: 6755339 doi: 10.3389/fphar.2019.01022
Schuchardt JP, Ostermann AI, Stork L, Fritzsch S, Kohrs H, Greupner T, et al. Effect of DHA supplementation on oxylipin levels in plasma and immune cell stimulated blood. Prostaglandins Leukot Essent Fat Acids. 2017;121:76–87.
doi: 10.1016/j.plefa.2017.06.007
Gabbs M, Zahradka P, Taylor CG, Aukema HM. Time Course and Sex effects of α-Linolenic acid-Rich and DHA-Rich supplements on human plasma oxylipins: a Randomized double-blind crossover trial. J Nutr. 2021;151:513–22.
pubmed: 33097936 doi: 10.1093/jn/nxaa294
Bensalem J, Servant L, Alfos S, Gaudout D, Layé S, Pallet V, et al. Dietary polyphenol supplementation prevents alterations of spatial Navigation in Middle-aged mice. Front Behav Neurosci. 2016;10:9.
pubmed: 26903826 pmcid: 4746350 doi: 10.3389/fnbeh.2016.00009
Bensalem J, Dudonné S, Gaudout D, Servant L, Calon F, Desjardins Y, et al. Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. J Nutr Sci. 2018;7:e19.
pubmed: 29854398 pmcid: 5971226 doi: 10.1017/jns.2018.10
Bensalem J, Dudonné S, Etchamendy N, Pellay H, Amadieu C, Gaudout D, et al. Polyphenols from grape and blueberry improve episodic memory in Healthy Elderly with Lower Level of Memory performance: a bicentric Double-Blind, randomized, placebo-controlled clinical study. J Gerontol Ser A. 2019;74:996–1007.
doi: 10.1093/gerona/gly166
Jackson PA, Forster J, Khan J, Pouchieu C, Dubreuil S, Gaudout D, et al. Effects of Saffron Extract supplementation on Mood, Well-Being, and response to a Psychosocial Stressor in healthy adults: a Randomized, Double-Blind, Parallel Group, Clinical Trial. Front Nutr. 2021;7:606124.
pubmed: 33598475 pmcid: 7882499 doi: 10.3389/fnut.2020.606124
De Monchaux C, De Smedt-Peyrusse V, Morael J, Vancassel S, Capuron L, Gaudout D, et al. Prevention of stress-induced depressive-like behavior by Saffron extract is associated with modulation of Kynurenine pathway and monoamine neurotransmission. Pharmaceutics. 2021;13:2155.
pubmed: 34959434 pmcid: 8709346 doi: 10.3390/pharmaceutics13122155
Monchaux de Oliveira C, Morael J, Guille A, Amadieu C, Vancassel S, Gaudout D, et al. Saffron extract interferes with lipopolysaccharide-induced brain activation of the kynurenine pathway and impairment of monoamine neurotransmission in mice. Front Nutr. 2023;10:1267839.
pubmed: 37867499 pmcid: 10585275 doi: 10.3389/fnut.2023.1267839
Mingam R, Moranis A, Bluthé R-M, De Smedt-Peyrusse V, Kelley KW, Guesnet P, et al. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci. 2008;28:1877–86.
pubmed: 18973601 pmcid: 2769572 doi: 10.1111/j.1460-9568.2008.06470.x
Larrieu T, Madore C, Joffre C, Layé S. Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. J Physiol Biochem. 2012;68:671–81.
pubmed: 22707188 doi: 10.1007/s13105-012-0179-6
Le Faouder P, Baillif V, Spreadbury I, Motta J-P, Rousset P, Chêne G, et al. LC–MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. J Chromatogr B. 2013;932:123–33.
doi: 10.1016/j.jchromb.2013.06.014
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, et al. Activation of Resolution pathways to prevent and fight chronic inflammation: lessons from Asthma and Inflammatory Bowel Disease. Front Immunol. 2019;10:1699.
pubmed: 31396220 pmcid: 6664683 doi: 10.3389/fimmu.2019.01699
Layé S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Mol Brain Res. 1994;27:157–62.
pubmed: 7877446 doi: 10.1016/0169-328X(94)90197-X
Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58:445–52.
pubmed: 11343523 doi: 10.1001/archpsyc.58.5.445
Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain. Front Immunol. 2017;8:1064.
pubmed: 28928740 pmcid: 5591429 doi: 10.3389/fimmu.2017.01064
Zhao Y, Walker DI, Lill CM, Bloem BR, Darweesh SKL, Pinto-Pacheco B, et al. Lipopolysaccharide-binding protein and future Parkinson’s disease risk: a European prospective cohort. J Neuroinflammation. 2023;20:170.
pubmed: 37480114 pmcid: 10362572 doi: 10.1186/s12974-023-02846-2
Hasegawa-Ishii S, Inaba M, Shimada A. Widespread time-dependent changes in tissue cytokine concentrations in brain regions during the acute phase of endotoxemia in mice. Neurotoxicology. 2020;76:67–74.
pubmed: 31628962 doi: 10.1016/j.neuro.2019.10.006
Essadek S, Bouchab H, El Kebbaj R, Gondcaille C, El Kamouni S, Savary S, et al. Effects of a short-term Lipopolysaccharides Challenge on Mouse Brain and Liver Peroxisomal antioxidant and β-oxidative functions: protective action of Argan Oil. Pharmaceuticals. 2022;15:465.
pubmed: 35455460 pmcid: 9030085 doi: 10.3390/ph15040465
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.
pubmed: 24316888 doi: 10.1038/nn.3599
Li C, Zhao B, Lin C, Gong Z, An X. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int. 2019;43:360–72.
pubmed: 29663649 doi: 10.1002/cbin.10975
Chiang N, Serhan CN. Structural elucidation and physiologic functions of Specialized Pro-resolving mediators and their receptors. Mol Aspects Med. 2017;58:114–29.
pubmed: 28336292 pmcid: 5623601 doi: 10.1016/j.mam.2017.03.005
Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2:612–9.
pubmed: 11429545 doi: 10.1038/89759
Graves JP, Bradbury JA, Gruzdev A, Li H, Duval C, Lih FB, et al. Expression of Cyp2c/Cyp2j subfamily members and oxylipin levels during LPS-induced inflammation and resolution in mice. FASEB J. 2019;33:14784–97.
pubmed: 31690125 pmcid: 6894073 doi: 10.1096/fj.201901872R
Jing W, Song S, Sun H, Chen Y, Zhao Q, Zhang Y, et al. Mahuang-Fuzi-Xixin Decoreversesverses Depression-Like Behavior in LPS-Inmiced Miregulatinglating inflammasomemasomneurogenesisenesis. Neural Plast. 2019;2019:1–13.
doi: 10.1155/2019/1571392
Button EB, Mitchell AS, Domingos MM, Chung JH-J, Bradley RM, Hashemi A, et al. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are Proinflammatory. Lipids. 2014;49:305–16.
pubmed: 24473753 doi: 10.1007/s11745-014-3882-y
Weylandt KH, Krause LF, Gomolka B, Chiu C-Y, Bilal S, Nadolny A, et al. Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α. Carcinogenesis. 2011;32:897–903.
pubmed: 21421544 pmcid: 3106436 doi: 10.1093/carcin/bgr049
Balvers MGJ, Verhoeckx KCM, Bijlsma S, Rubingh CM, Meijerink J, Wortelboer HM, et al. Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues. Metabolomics. 2012;8:1130–47.
pubmed: 23136559 pmcid: 3483099 doi: 10.1007/s11306-012-0421-9
Leng S, Winter T, Aukema HM, Dietary ALA. EPA and DHA have distinct effects on oxylipin profiles in female and male rat kidney, liver and serum. J Nutr Biochem. 2018;57:228–37.
pubmed: 29778015 doi: 10.1016/j.jnutbio.2018.04.002
Turnbull J, Jha RR, Ortori CA, Lunt E, Tighe PJ, Irving WL, et al. Serum levels of proinflammatory lipid mediators and Specialized Proresolving molecules are increased in patients with severe Acute Respiratory Syndrome Coronavirus 2 and correlate with markers of the adaptive Immune response. J Infect Dis. 2022;225:2142–54.
pubmed: 34979019 pmcid: 8755389 doi: 10.1093/infdis/jiab632
Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2016;55:249–59.
pubmed: 26718448 doi: 10.1016/j.bbi.2015.12.013
Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in our understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr. 2015;6:513–40.
pubmed: 26374175 pmcid: 4561827 doi: 10.3945/an.114.007732
da Costa Souza F, Grodzki ACG, Morgan RK, Zhang Z, Taha AY, Lein PJ. Oxidized linoleic acid metabolites regulate neuronal morphogenesis in vitro. Neurochem Int. 2023;164:105506.
pubmed: 36758902 pmcid: 10495953 doi: 10.1016/j.neuint.2023.105506
Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1998;95:7614–9.
pubmed: 9636198 pmcid: 22700 doi: 10.1073/pnas.95.13.7614
Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun. 2018;9:5379.
pubmed: 30568188 pmcid: 6300665 doi: 10.1038/s41467-018-07387-4
Zhang J, Li S, Liu F, Yang K. Role of CD68 in tumor immunity and prognosis prediction in pan-cancer. Sci Rep. 2022;12:7844.
pubmed: 35550532 pmcid: 9098459 doi: 10.1038/s41598-022-11503-2
Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, et al. Sex-specific features of Microglia from Adult mice. Cell Rep. 2018;23:3501–11.
pubmed: 29924994 pmcid: 6024879 doi: 10.1016/j.celrep.2018.05.048

Auteurs

Marie Martin (M)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.
Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France.

Emie Debenay (E)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.

Jeanne Bardinet (J)

Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France.
Université Bordeaux, INSERM, BPH, Bordeaux, U1219, 33000, France.

Adrien Peltier (A)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.
NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, 33076, France.

Line Pourtau (L)

Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France.

David Gaudout (D)

Activ'Inside, ZA du Grand Cazeau, 12 route de Beroy, Beychac-et-Caillau, 33750, France.

Sophie Layé (S)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.

Véronique Pallet (V)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.

Anne-Laure Dinel (AL)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France.
NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, 33076, France.

Corinne Joffre (C)

Université Bordeaux, INRAE, Bordeaux INP, UMR 1286, Nutrineuro, Bordeaux, 33076, France. corinne.joffre@inrae.fr.

Classifications MeSH