Computational immune synapse analysis reveals T-cell interactions in distinct tumor microenvironments.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
28 Sep 2024
Historique:
received: 11 03 2024
accepted: 16 09 2024
medline: 29 9 2024
pubmed: 29 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

The tumor microenvironment (TME) and the cellular interactions within it can be critical to tumor progression and treatment response. Although technologies to generate multiplex images of the TME are advancing, the many ways in which TME imaging data can be mined to elucidate cellular interactions are only beginning to be realized. Here, we present a novel approach for multipronged computational immune synapse analysis (CISA) that reveals T-cell synaptic interactions from multiplex images. CISA enables automated discovery and quantification of immune synapse interactions based on the localization of proteins on cell membranes. We first demonstrate the ability of CISA to detect T-cell:APC (antigen presenting cell) synaptic interactions in two independent human melanoma imaging mass cytometry (IMC) tissue microarray datasets. We then verify CISA's applicability across data modalities with melanoma histocytometry whole slide images, revealing that T-cell:macrophage synapse formation correlates with T-cell proliferation. We next show the generality of CISA by extending it to breast cancer IMC images, finding that CISA quantifications of T-cell:B-cell synapses are predictive of improved patient survival. Our work demonstrates the biological and clinical significance of spatially resolving cell-cell synaptic interactions in the TME and provides a robust method to do so across imaging modalities and cancer types.

Identifiants

pubmed: 39341903
doi: 10.1038/s42003-024-06902-2
pii: 10.1038/s42003-024-06902-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1201

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : P30CA034196
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA230031
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA204115

Informations de copyright

© 2024. The Author(s).

Références

Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).
pubmed: 33811125 doi: 10.1158/2159-8290.CD-20-1808
Kahlon, N. et al. Melanoma treatments and mortality rate trends in the US, 1975 to 2019. JAMA Netw. Open 5, e2245269 (2022).
pubmed: 36472871 pmcid: 9856246 doi: 10.1001/jamanetworkopen.2022.45269
Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).
pubmed: 22419253 doi: 10.1038/nrc3245
Wang, S., He, Z., Wang, X., Li, H. & Liu, X.-S. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 8, e49020 (2019).
pubmed: 31767055 pmcid: 6879305 doi: 10.7554/eLife.49020
Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
pubmed: 25838376 doi: 10.1126/science.aaa6204
Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 541, 321–330 (2017).
pubmed: 28102259 doi: 10.1038/nature21349
Palucka, A. K. & Coussens, L. M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).
pubmed: 26967289 pmcid: 4788788 doi: 10.1016/j.cell.2016.01.049
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532 pmcid: 7238960 doi: 10.1038/s41577-020-0306-5
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1−CD8+ tumor-infiltrating T Cells. Immunity 50, 181–194.e6 (2019).
pubmed: 30635236 pmcid: 6336113 doi: 10.1016/j.immuni.2018.11.014
Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).
pubmed: 31645760 pmcid: 6858572 doi: 10.1038/s41586-019-1671-8
Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).
pubmed: 25446897 pmcid: 4254577 doi: 10.1016/j.ccell.2014.09.007
Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).
pubmed: 14647479 doi: 10.1038/nri1245
Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).
pubmed: 18275476 doi: 10.1111/j.1600-065X.2008.00589.x
Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).
pubmed: 11728337 doi: 10.1016/S1074-7613(01)00234-5
Kabanova, A., Zurli, V. & Baldari, C. T. Signals controlling Lytic Granule polarization at the Cytotoxic immune synapse. Front. Immunol. 9, 307 (2018).
pubmed: 29515593 pmcid: 5826174 doi: 10.3389/fimmu.2018.00307
Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell 40, 624–638 (2022).
pubmed: 35623342 pmcid: 9197962 doi: 10.1016/j.ccell.2022.05.004
Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single cell resolution. Cancer Discov. 12, 1518 (2022).
pubmed: 35404441 pmcid: 9167783 doi: 10.1158/2159-8290.CD-21-1357
Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).
pubmed: 34341583 doi: 10.1038/s41592-021-01203-6
Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).
pubmed: 30193111 pmcid: 6132072 doi: 10.1016/j.cell.2018.08.039
Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).
pubmed: 31959985 doi: 10.1038/s41586-019-1876-x
Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).
pubmed: 32763154 pmcid: 7479520 doi: 10.1016/j.cell.2020.07.005
Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).
pubmed: 28783155 pmcid: 5617107 doi: 10.1038/nmeth.4391
Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).
pubmed: 35363540 doi: 10.1126/sciimmunol.abk1692
Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).
pubmed: 35363543 doi: 10.1126/sciimmunol.abi5072
Martinez-Morilla, S. et al. Biomarker discovery in patients with immunotherapy-treated melanoma with imaging mass cytometry. Clin. Cancer Res. 27, 1987–1996 (2021).
pubmed: 33504554 pmcid: 8026677 doi: 10.1158/1078-0432.CCR-20-3340
Wabnitz, G., Kirchgessner, H. & Samstag, Y. Qualitative and quantitative analysis of the immune synapse in the human system using imaging flow cytometry. J. Vis. Exp. 143, e55345 (2019).
Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).
pubmed: 22863836 pmcid: 3514885 doi: 10.1016/j.immuni.2012.07.011
Martinek, J. et al. Transcriptional profiling of macrophages in situ in metastatic melanoma reveals localization-dependent phenotypes and function. Cell Rep. Med. 3, 100621 (2022).
pubmed: 35584631 pmcid: 9133468 doi: 10.1016/j.xcrm.2022.100621
Li, H., Fan, X. & Houghton, J. Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell. Biochem. 101, 805–815 (2007).
pubmed: 17226777 doi: 10.1002/jcb.21159
Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).
pubmed: 9705944 pmcid: 2213361 doi: 10.1084/jem.188.4.619
Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell. Mol. Immunol. 14, 662–674 (2017).
pubmed: 28626234 pmcid: 5549607 doi: 10.1038/cmi.2017.35
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
pubmed: 17076895 pmcid: 1794559 doi: 10.1186/gb-2006-7-10-r100
Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).
Sivajothi, S., Martinek, J. & Palucka, K. Triple Negative Breast Cancer TMA IMC. Zenodo https://doi.org/10.5281/zenodo.13271783 (2024).
Lu, P. et al. IMC-Denoise: a content aware denoising pipeline to enhance imaging mass cytometry. Nat. Commun. 14, 1601 (2023).
pubmed: 36959190 pmcid: 10036333 doi: 10.1038/s41467-023-37123-6
Ambler, R. et al. PD-1 suppresses the maintenance of cell couples between cytotoxic T cells and target tumor cells within the tumor. Sci. Signal. 13, eaau4518 (2020).
pubmed: 32934075 pmcid: 7784968 doi: 10.1126/scisignal.aau4518
Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).
pubmed: 22641383 pmcid: 3371732 doi: 10.1084/jem.20112741
Elliot, T. A. E. et al. Antigen and checkpoint receptor engagement recalibrates T cell receptor signal strength. Immunity 54, 2481–2496.e6 (2021).
pubmed: 34534438 pmcid: 8585507 doi: 10.1016/j.immuni.2021.08.020
Danielson, E. et al. Molecular diversity of glutamatergic and GABAergic synapses from multiplexed fluorescence imaging. eneuro 8, ENEURO.0286–20.2020 (2021).
pubmed: 33355295 doi: 10.1523/ENEURO.0286-20.2020
Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).
pubmed: 15048111 doi: 10.1038/ni1058
Wiedemann, A., Depoil, D., Faroudi, M. & Valitutti, S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc. Natl Acad. Sci. USA 103, 10985–10990 (2006).
pubmed: 16832064 pmcid: 1544161 doi: 10.1073/pnas.0600651103
Gholamin, S. et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9, eaaf2968 (2017).
pubmed: 28298418 doi: 10.1126/scitranslmed.aaf2968
Sikic, B. I. et al. First-in-human, first-in-class phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).
pubmed: 30811285 pmcid: 7186585 doi: 10.1200/JCO.18.02018
Liu, X. et al. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).
pubmed: 26322579 pmcid: 4598283 doi: 10.1038/nm.3931
Fremd, C., Schuetz, F., Sohn, C., Beckhove, P. & Domschke, C. B cell-regulated immune responses in tumor models and cancer patients. OncoImmunology 2, e25443 (2013).
pubmed: 24073382 pmcid: 3782133 doi: 10.4161/onci.25443
DiLillo, D. J., Yanaba, K. & Tedder, T. F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol. 184, 4006–4016 (2010).
pubmed: 20194720 doi: 10.4049/jimmunol.0903009
Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).
pubmed: 31519915 pmcid: 6744450 doi: 10.1038/s41467-019-12160-2
Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).
pubmed: 31942075 pmcid: 8762581 doi: 10.1038/s41586-019-1922-8
Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).
pubmed: 31942071 doi: 10.1038/s41586-019-1914-8
Hua, Z. & Hou, B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunol. Rev. 296, 24–35 (2020).
pubmed: 32304104 doi: 10.1111/imr.12859
Ladányi, A. et al. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol. Immunother. 60, 1729–1738 (2011).
pubmed: 21779876 pmcid: 11028465 doi: 10.1007/s00262-011-1071-x
Mahmoud, S. M. A. et al. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res. Treat. 132, 545–553 (2012).
pubmed: 21671016 doi: 10.1007/s10549-011-1620-1
Erkes, D. A. et al. Virus-Specific CD8(+) T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J. Immunol. 198, 2979–2988 (2017).
pubmed: 28202614 doi: 10.4049/jimmunol.1601064
Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).
pubmed: 30718505 pmcid: 6362136 doi: 10.1038/s41467-019-08534-1
Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).
pubmed: 29993362 pmcid: 6075866 doi: 10.7554/eLife.31657
Saleh, R. & Elkord, E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett. 490, 174–185 (2020).
pubmed: 32721551 doi: 10.1016/j.canlet.2020.07.022
Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2021).
pubmed: 35121992 pmcid: 7613779 doi: 10.1038/s43018-021-00301-w
Angell, H. & Galon, J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25, 261–267 (2013).
pubmed: 23579076 doi: 10.1016/j.coi.2013.03.004
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. (2018). Cell detection with star-convex polygons. In Conference of the Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, Ú., Schnabel, J., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265-273 (Springer, 2018).
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659 doi: 10.1038/s41592-020-01018-x
Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L. & Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat. Methods 13, 493–496 (2016).
pubmed: 27183440 pmcid: 4896314 doi: 10.1038/nmeth.3863
Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse: involvement of SNARE complexes. Immunity 20, 577–588 (2004).
pubmed: 15142526 doi: 10.1016/S1074-7613(04)00106-2
Barcia, C. et al. Infiltrating CTLs in human glioblastoma establish immunological synapses with tumorigenic cells. Am. J. Pathol. 175, 786–798 (2009).
pubmed: 19628762 pmcid: 2716973 doi: 10.2353/ajpath.2009.081034
Wu, T.-C. et al. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res. 78, 5243–5258 (2018).
pubmed: 30012670 pmcid: 6391892 doi: 10.1158/0008-5472.CAN-18-0413
Wang, M. et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 32, 1537–1549 (2018).
pubmed: 29146734 doi: 10.1096/fj.201700740R
Walt, Svander et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
pubmed: 25024921 pmcid: 4081273 doi: 10.7717/peerj.453
Liu, D. & Yu, J. Otsu Method and K-means. 2009 Ninth Int. Conf. Hybrid. Intell. Syst. 1, 344–349 (2009).
Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
McQuarrie, D. A. Statistical Mechanics (Harper & Row, 1976).
Jubran, M. R. et al. Dissecting the role of crosstalk between glioblastoma subpopulations in tumor cell spreading. Oncogenesis 9, 1–15 (2020).
doi: 10.1038/s41389-020-0199-y
Hoch, T. et al. Multiplexed imaging mass cytometry of chemokine milieus in metastatic melanoma - Raw Data https://doi.org/10.5281/zenodo.6004986 (2022).
Jackson, H. W. et al. The Single-Cell Pathology Landscape of Breast Cancer. Zenodo https://doi.org/10.5281/ZENODO.3518284 (2019).
Moldoveanu, D. et al. Raw CyTOF images associated with Moldoveanu et al. 2022, Science Immunology. Zenodo https://doi.org/10.5281/zenodo.5903190 (2022).
Martinek, J., Boruchov, H., Glutali, A., Seeniraj, S. & Palucka, K. Histocytometry profiling of immune infiltrate in metastatic melanoma. Zenodo https://doi.org/10.5281/zenodo.13271495 (2022).
Liu, Z., Wang, V. & Chuang, J. Code for Computational Immune Synapse Analysis. Zenodo https://doi.org/10.5281/ZENODO.13341116 (2024).

Auteurs

Victor G Wang (VG)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.

Zichao Liu (Z)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.

Jan Martinek (J)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Ali Foroughi Pour (A)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Jie Zhou (J)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.

Hannah Boruchov (H)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Kelly Ray (K)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Karolina Palucka (K)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Jeffrey H Chuang (JH)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. jeff.chuang@jax.org.
Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA. jeff.chuang@jax.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH