Bio-mimicking DNA fingerprint profiling for HLS watermarking to counter hardware IP piracy.
DNA fingerprinting
Encryption
HLS
Hardware security
Piracy
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Sep 2024
28 Sep 2024
Historique:
received:
20
06
2024
accepted:
13
09
2024
medline:
29
9
2024
pubmed:
29
9
2024
entrez:
28
9
2024
Statut:
epublish
Résumé
The multifaceted, multivendor-based global design supply chain induces hardware threats of intellectual property (IP) piracy for modern computing and electronic systems. Current hardware watermarking techniques fall short either in terms of watermark strength (size of covert constraints generated) or number of security layers/variables involved in the security constraints generation process. This paper presents a novel approach for high level synthesis (HLS) watermarking by bio-mimicking DNA fingerprint profiling to counter hardware IP piracy. The proposed approach effectively captures the vital DNA fingerprint profiling phases such as DNA sequencing, DNA fragmentation, fragment replication, DNA ligase, etc. and bio-mimics them to generate a digital watermarking framework. The presented approach has been demonstrated on convolutional layer and JPEG compression-decompression (CODEC) algorithms that are widely used in several medical and machine learning applications. The proposed approach has been thoroughly compared with several state-of-the-art approaches. The proposed approach depicts superior security in the probability of coincidence of up to ~ 10
Identifiants
pubmed: 39341963
doi: 10.1038/s41598-024-73119-y
pii: 10.1038/s41598-024-73119-y
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22413Subventions
Organisme : Council of Scientific and Industrial Research, India
ID : 22/0856/23/EMR-II
Informations de copyright
© 2024. The Author(s).
Références
Le Gal, B. & Bossuet, L. Automatic low-cost IP watermarking technique based on output mark insertions. Des. Autom. Embed. Syst.16, 71–92 (2012).
doi: 10.1007/s10617-012-9085-y
Schneiderman, R. DSPs evolving in consumer electronics applications. IEEE Signal. Process. Mag. 27(3), 6–10 (2010).
Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. in Proc. ICET, pp. 1–6. (2017).
Dai, D. An introduction of CNN: Models and training on neural network models. in International Conference on Big Data, Artificial Intelligence and Risk Management (ICBAR), Shanghai, China, 2021, pp. 135–13. (2021).
Guo, K. et al. Angel-Eye: A Complete design flow for mapping CNN onto customized hardware. in Proc. ISVLSI, pp. 24–29. (2016).
Putra, R. E. et al. Implementation of convolutional neural network in the development of object recognition system. in Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 2023, pp. 286–290. (2023).
Bai, L., Zhao, Y. & Huang, X. A CNN accelerator on FPGA using depthwise separable convolution. in IEEE Trans. Circuits Syst., II, Exp. Briefs. 65(10), pp. 1415–1419 (2018).
Rostami, M., Koushanfar, F. & Karri, R. A primer on hardware security: Models, methods, and metrics. in Proceedings IEEE, 102(8), pp. 1283–1295 (2014).
Tehranipoor, M. & Knapp, C. T1A: Opportunities and challenges for secure hardware and verifying trust in integrated circuits. in 27th IEEE International System-on-Chip Conference (SOCC), Las Vegas, NV, USA (2014).
Tehranipoor, M., Guin, U. & Forte, D. Hardware IP watermarking. in Counterfeit Integrated Circuits. (Springer, 2015). https://doi.org/10.1007/978-3-319-11824-6_10 .
doi: 10.1007/978-3-319-11824-6_10
Chen, J. & Schafer, B. C. Watermarking of behavioral IPs: A practical approach. in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), France, pp. 1266–1271 (2021).
Sengupta, A. & Rathor, M. Facial biometric for securing hardware accelerators. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29(1), 112–123 (2021).
Kahng, A. B. et al. Watermarking techniques for intellectual property protection. in Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175), San Francisco, CA, USA, pp. 776–781 (1998).
Sengupta, A., Chaurasia, R. & Reddy, T. Contact-less palmprint biometric for securing DSP coprocessors used in CE systems. in IEEE Transactions on Consumer Electronics, vol. 67, no. 3, pp. 202–213 (2021).
Wang, X., Zheng, Y., Basak, A. & Bhunia, S. IIPS: Infrastructure IP for secure SoC design. in IEEE Trans. Comput. 64(8), pp. 2226–2238 (2015).
Koushanfar, F. et al. Can EDA combat the rise of electronic counterfeiting? DAC Des. Autom. Conf.2012, 133–138 (2012).
Arafin, M. T., Stanley, A. & Sharma, P. Hardware-based anti-counterfeiting techniques for safeguarding supply chain integrity. in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017).
Hroub, A. & Elrabaa, M. E. S. SecSoC: A secure system on chip architecture for IoT devices. in 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 41–44 (2022).
Colombier, B. & Bossuet, L. Survey of hardware protection of design data for integrated circuits and intellectual properties. IET Comput. Digit. Tech.8(6), 274–287 (2015).
doi: 10.1049/iet-cdt.2014.0028
Badier, H., Pilato, C., Lann, J. C. L., Coussy, P. & Gogniat, G. Opportunistic IP birthmarking using side effects of code transformations on high-level synthesis. in 2021 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France. (2021).
Koushanfar, F., Hong, I. & Potkonjak, M. Behavioral synthesis techniques for intellectual property protection. ACM Trans. Des. Autom. Electron. Syst.10(3), 523–545 (2005).
doi: 10.1145/1080334.1080338
Castillo, E. et al. Automated signature insertion in combinational logic patterns for HDL IP core protection. in 2008 4th Southern Conference on Programmable Logic, Bariloche, Argentina, pp. 183–186 (2008). https://doi.org/10.1109/SPL.2008.4547753
Yu, T. & Zhu, Y. A new watermarking method for soft IP protection. in International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 2011, pp. 3839–3842 (2011).
Sengupta, A. & Bhadauria, S. Exploring low cost optimal watermark for reusable IP cores during high level synthesis. IEEE Access. 4, 2198–2215 (2016).
Sengupta, A. & Rathor, M. IP core steganography for protecting DSP kernels used in CE systems. IEEE Trans. Consum. Electron.65(4), 506–515 (2019).
doi: 10.1109/TCE.2019.2944882
Rizzo, S., Bertini, F. & Montesi, D. Fine-grain watermarking for intellectual property protection. EURASIP J. Info Secur. 10 (2019).
Potlapally, N. Hardware security in practice: Challenges and opportunities. in IEEE International Symposium on Hardware-Oriented Security and Trust, San Diego, CA, USA, 2011, pp. 93–98 (2011).
Islam, S. A., Sah, L. K. & Srinivas Katkoori High-level synthesis of Key-obfuscated RTL IP with Design Lockout and Camouflaging. ACM Trans. Des. Autom. Electron. Syst.26, 1 (2020).
doi: 10.1145/3410337
Karmakar, R., Jana, S. S. & Chattopadhyay, S. A cellular automata guided finite-state-machine watermarking strategy for IP protection of sequential circuits. IEEE Trans. Emerg. Top. Comput., 10(2), 806–823 (2022).
Sengupta, A. & Chaurasia, R. Securing IP cores for DSP applications using structural obfuscation and chromosomal DNA impression. IEEE Access.10, 50903–50913 (2022).
doi: 10.1109/ACCESS.2022.3174349
Rathor, M. & Rathor, G. P. Hard-sign: A hardware watermarking scheme using dated handwritten signature. IEEE Des. Test.41 (2024).
University of California. Riverside, http://www.faculty.ucr.edu/~mmaduro/random.htm . Last accessed on June 2024.
Bioinformatics, D. N. A. sequence suite. https://www.bioinformatics.org/sms2/random_dna.html . Last accessed on June 2024.
Universitet, A. https://users-birc.au.dk/~palle/php/fabox/random_sequence_generator.php . Last accessed on June 2024.
Sengupta, A. & Chaurasia, R. Secured convolutional layer IP core in convolutional neural network using facial biometric. in IEEE Trans. Consum. Electron., 68(3), pp. 291–306 (2022).
NanGate 15 nm Open Cell Library. [Online]. Available: June. (2024). http://www.nangate.com/?pageid=2328 .
CAD for Assurance, Crypto-Steganography, H. L. S. & Tool, F. IEEE CEDA and IEEE HSTTC, (2024). https://cadforassurance.org/tools/ip-icprotection/crypto-steganography-tool/
University of California Santa Barbara Express Group, accessed on [Online]. Available: May. (2024). http://express.ece.ucsb.edu/benchmark
M. Potkonjak. Methods and systems for the identification of circuits and circuit designs, USPTO, US7017043B1 (2006).