Study on novel neutron irradiation without beam shaping assembly in Boron Neutron Capture Therapy.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Sep 2024
Historique:
received: 12 06 2024
accepted: 17 09 2024
medline: 29 9 2024
pubmed: 29 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

Boron Neutron Capture Therapy (BNCT) is performed using high-intensity neutron sources; however, the energy of the primary neutrons is too high for direct patient irradiation. Thus, neutron moderation is mandatory and is performed using a device known as a Beam Shaping Assembly (BSA). Due to the differences in flux and energy spectra between neutron sources, each facility needs a dedicated BSA design, whether it is based on a nuclear reactor or, more recently, on an accelerator. Since moderation involves the loss of neutrons, typically by a factor of 1000, it is necessary to generate a very high flux before neutrons pass through the BSA. We propose a novel approach that eliminates the necessity of a BSA, BSA-free, by generating neutrons suitable in flux and energy for direct patient irradiation through the [Formula: see text]Sc(p,n)[Formula: see text]Ti reaction using near-threshold protons. Our findings demonstrate that all IAEA quality factors for BNCT can be met with existing proton accelerators. Additionally, figures of merit studied provide similar results compared to real BNCT facilities. This breakthrough opens up new avenues in BNCT, among others, the control of the neutron penetration within the human body by small changing in the proton energy. Also, it is expected simplified accelerator-based facilities in terms of manufacturing and maintenance and operation. This work is a study based on experimental data and Monte Carlo simulations. Technical challenges and safety are addressed in Discussion section. This novel proposal is under evaluation as patent.

Identifiants

pubmed: 39341968
doi: 10.1038/s41598-024-73458-w
pii: 10.1038/s41598-024-73458-w
doi:

Substances chimiques

Protons 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22434

Subventions

Organisme : Ministerio de Universidades
ID : PID2020.117969RB.I00 funded by MICIU/AEI /10.13039/5011000110 33
Organisme : Ministerio de Universidades
ID : PID2020.117969RB.I00 funded by MICIU/AEI /10.13039/5011000110 33

Informations de copyright

© 2024. The Author(s).

Références

Jin, W. H., Seldon, C., Butkus, M., Sauerwein, W. & Giap, H. B. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int. J. Part. Therapy9, 71–82, https://doi.org/10.14338/IJPT-22-00002.1 (2022)
He, H. et al. The basis and advances in clinical application of boron neutron capture therapy. Radiat. Oncol.16, 216. https://doi.org/10.1186/s13014-021-01939-7 (2021).
doi: 10.1186/s13014-021-01939-7 pubmed: 34743756 pmcid: 8573925
Inkscape Project. Inkscape. Version 1.3.2.
Aiyama, H. et al. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at university of tsukuba. Appl. Radiat. Isotopes69, 1819–1822. https://doi.org/10.1016/j.apradiso.2011.04.031 (2011).
doi: 10.1016/j.apradiso.2011.04.031
Kankaanranta, L. et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys.82, e67–e75. https://doi.org/10.1016/j.ijrobp.2010.09.057 (2012).
doi: 10.1016/j.ijrobp.2010.09.057 pubmed: 21300462
Green, S. Developments in accelerator based boron neutron capture therapy. Radiat. Phys. Chem.51, 561–569. https://doi.org/10.1016/S0969-806X(97)00203-X (1998).
doi: 10.1016/S0969-806X(97)00203-X
Kreiner, A. J. et al. Present status of accelerator-based BNCT. Rep. Pract. Oncol. Radiotherapy21, 95–101. https://doi.org/10.1016/j.rpor.2014.11.004 (2016).
doi: 10.1016/j.rpor.2014.11.004
Hirose, K. et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase II trial. Radiother. Oncol.155, 182–187. https://doi.org/10.1016/j.radonc.2020.11.001 (2021).
doi: 10.1016/j.radonc.2020.11.001 pubmed: 33186684
Neutron therapeutics. http://www.neutrontherapeutics.com/ (2022). September 9, 2022.
TAE life sciences. https://taelifesciences.com/about-us/ (2022). September 9, 2022.
Kim, K.-O., Kim, J. K. & Kim, S. Y. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from 7Li(p, n)7be reaction. Appl. Radiat. Isotopes67, 1173–1179. https://doi.org/10.1016/j.apradiso.2009.02.004 (2009).
doi: 10.1016/j.apradiso.2009.02.004
Minsky, D. & Kreiner, A. Beam shaping assembly optimization for 7Li(p, n)7Be accelerator based BNCT. Appl. Radiat. Isotopes88, 233–237. https://doi.org/10.1016/j.apradiso.2013.11.088 (2014).
doi: 10.1016/j.apradiso.2013.11.088
Zaidi, L., Belgaid, M., Taskaev, S. & Khelifi, R. Beam shaping assembly design of 7li(p, n)7be neutron source for boron neutron capture therapy of deep-seated tumor. Appl. Radiat. Isot.139, 316–324. https://doi.org/10.1016/j.apradiso.2018.05.029 (2018).
doi: 10.1016/j.apradiso.2018.05.029 pubmed: 29890472
Koay, H. et al. Feasibility study of compact accelerator-based neutron generator for multi-port BNCT system. Nucl. Instrum. Methods Phys. Res. Sect. A899, 65–72. https://doi.org/10.1016/j.nima.2018.05.025 (2018).
doi: 10.1016/j.nima.2018.05.025
Torres-Sánchez, P., Porras, I., Ramos-Chernenko, N., Arias de Saavedra, F. & Praena, J. Optimized beam shaping assembly for a 2.1-mev proton-accelerator-based neutron source for boron neutron capture therapy. Sci. Rep.11, 7576. https://doi.org/10.1038/s41598-021-87305-9 (2021).
doi: 10.1038/s41598-021-87305-9 pubmed: 33828211 pmcid: 8026976
IAEA. Advances in Boron Neutron Capture Therapy. Non-serial Publications (International Atomic Energy Agency, Vienna, 2023).
Bisceglie, E., Colangelo, P., Colonna, N., Santorelli, P. & Variale, V. On the optimal energy of epithermal neutron beams for BNCT. Phys. Med. Biol.45, 49. https://doi.org/10.1088/0031-9155/45/1/304 (2000).
doi: 10.1088/0031-9155/45/1/304
Rasouli, F. S. & Masoudi, S. F. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors. Appl. Radiat. Isot.96, 45–51. https://doi.org/10.1016/j.apradiso.2014.11.016 (2015).
doi: 10.1016/j.apradiso.2014.11.016 pubmed: 25479433
Torres-Sánchez, P., Porras, I., de Saavedra, F. A. & Praena, J. Study of the upper energy limit of useful epithermal neutrons for boron neutron capture therapy in different tissues. Radiat. Phys. Chem.185, 109490. https://doi.org/10.1016/j.radphyschem.2021.109490 (2021).
doi: 10.1016/j.radphyschem.2021.109490
Brugger, R., Bonner, T. & Marion, J. Study of the nuclear reactions sc 45 (p, n) ti 45, cu 63 (p, n) zn 63, cu 65 (p, n) zn 65, and zn (p, n) ga. Phys. Rev.100, 84. https://doi.org/10.1103/PhysRev.100.84 (1955).
doi: 10.1103/PhysRev.100.84
Rogers, D. The 45sc(p, n) reaction as a source of monoenergetic 10–50 kev neutrons. Nucl. Inst. Methods142, 475–478. https://doi.org/10.1016/0029-554X(77)90685-1 (1977).
doi: 10.1016/0029-554X(77)90685-1
Gressier, V. et al. AMANDE: a new facility for monoenergetic neutron fields production between 2 keV and 20 MeV. Radiat. Protect. Dosimetry110, 49–52. https://doi.org/10.1093/rpd/nch185 (2004).
doi: 10.1093/rpd/nch185
Matsumoto, T., Harano, H., Shimoyama, T., Kudo, K. & Uritani, A. Characterisation of kilo electron volt neutron fluence standard with the 45sc(p, n)45ti reaction at nmij. Radiat. Prot. Dosimetry.126, 155–158. https://doi.org/10.1093/rpd/ncm033 (2007).
doi: 10.1093/rpd/ncm033 pubmed: 17513857
Schölermann, H. & Siebert, B. Calibration of a van de graaf accelerator and determination of the threshold of the reaction 45sc (p, n) 45ti using a covariance analysis. Nucl. Instrum. Methods Phys. Res. Sect. A236, 225–230. https://doi.org/10.1016/0168-9002(85)90155-X (1985).
doi: 10.1016/0168-9002(85)90155-X
Hunt, J., Cosack, M. & Lesiecki, H. Calibration of neutron survey meters over the energy range from 1 to 30 kev with accelerator produced monoenergetic neutrons. Tech. Rep., Proc. of 5th symposium on neutron dosimetry, EUR-9762 (CEC Luxembourg), I, 597-606 (1985).
Tanimura, Y. et al. Construction of monoenergetic neutron calibration fields using 45sc (p, n) 45ti reaction at jaea. Radiat. Prot. Dosimetry.126, 8–12. https://doi.org/10.1093/rpd/ncm004 (2007).
doi: 10.1093/rpd/ncm004 pubmed: 17496303
Lamirand, V. Determination of cross sections for the production of low-energy monoenergetic neutron fields. Ph.D. thesis, Université de Grenoble (2011).
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).
Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng.9, 90–95. https://doi.org/10.1109/MCSE.2007.55 (2007).
doi: 10.1109/MCSE.2007.55
Exfor 21-sc-45(p,n)22-ti-45. https://www-nds.iaea.org/exfor/servlet/X4sMakeX4 . May 29, 2023.
Endl. https://www-nds.iaea.org/exfor/servlet/E4sSearch2 . May 29, 2023.
Dell, G. F., Ploughe, W. D. & Hausman, H. J. Total Reaction Cross Sections in the Mass Range 45 to 65. Nucl. Phys.64, 513. https://doi.org/10.1016/0029-5582(65)90576-6 (1965).
doi: 10.1016/0029-5582(65)90576-6
Howard, A. J., Jensen, H. B., Rios, M., Fowler, W. A. & Zimmerman, B. A. Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophys. J.188, 131. https://doi.org/10.1086/152694 (1974).
doi: 10.1086/152694
Iyengar, K. V. K., Gupta, S. K., Sekharan, K. K., Mehta, M. K. & Divatia, A. S. Fluctuations in the integrated cross section of the reaction [Formula: see text]Sc(p, n)[Formula: see text]Ti. Nuclear Phys. Sect. A96, 521. https://doi.org/10.1016/0375-9474(67)90602-1 (1967).
doi: 10.1016/0375-9474(67)90602-1
Mitchell, L. W., Anderson, M. R., Kennett, S. R. & Sargood, D. G. Cross Sections and Thermonuclear Reaction Rates for [Formula: see text]Ca(p,γ)[Formula: see text]Sc,[Formula: see text]Ca(p,γ)[Formula: see text]Sc,[Formula: see text]Ca(p, n)[Formula: see text]Sc and [Formula: see text]Sc(p, n)[Formula: see text]Ti. Nuclear Phys. Sect. A380, 318. https://doi.org/10.1016/0375-9474(82)90108-7 (1982).
doi: 10.1016/0375-9474(82)90108-7
Koning, A. et al. Tendl: Complete nuclear data library for innovative nuclear science and technology. Nuclear Data Sheets155, 1–55. https://doi.org/10.1016/j.nds.2019.01.002 (2019).
doi: 10.1016/j.nds.2019.01.002
Shaddad, I. (n, p) and [Formula: see text] Reactions cross-sections measurements and systematics around 14 MeV neutron energy. Ph.D. thesis, University of Khartoum (1995).
Ziegler, J. F. & Biersack, J. P. The stopping and range of ions in matter. In Treatise on heavy-ion science: volume 6: astrophysics, chemistry, and condensed matter, 93–129. https://doi.org/10.1007/978-1-4615-8103-1_3 (Springer, 1985).
Lee, C. & Zhou, X.-L. Thick target neutron yields for the 7li(p, n)7be reaction near threshold. Nucl. Instrum. Methods Phys. Res. Sect. B152, 1–11. https://doi.org/10.1016/S0168-583X(99)00026-9 (1999).
doi: 10.1016/S0168-583X(99)00026-9
Reifarth, R., Heil, M., Käppeler, F. & Plag, R. PINO-a tool for simulating neutron spectra resulting from the 7li(p, n) reaction. Nucl. Instrum. Methods Phys. Res., Sect. A608, 139–143. https://doi.org/10.1016/j.nima.2009.06.046 (2009).
doi: 10.1016/j.nima.2009.06.046
Praena, J. et al. Measurement of the MACS of Ta181(n,γ) at kT=30keV as a test of a method for Maxwellian neutron spectra generation. Nucl. Instrum. Methods Phys. Res., Sect. A727, 1–6. https://doi.org/10.1016/j.nima.2013.05.151 (2013).
doi: 10.1016/j.nima.2013.05.151
Praena, J. et al. Measurement of the MACS of Tb-159 (n, gamma) at kt= 30 kev by activation. Nucl. Data Sheets120, 205–207. https://doi.org/10.1016/j.nds.2014.07.047 (2014).
doi: 10.1016/j.nds.2014.07.047
Macias, M. Neboas Project. Joint Research Centre. European Comission. https://code.europa.eu/neboas/neboas_project .
Coderre, J. A. & Morris, G. M. The radiation biology of boron neutron capture therapy. Radiat. Res.151, 1–18. https://doi.org/10.2307/3579742 (1999).
doi: 10.2307/3579742 pubmed: 9973079
Pedrosa-Rivera, M. et al. Thermal neutron relative biological effectiveness factors for boron neutron capture therapy from in vitro irradiations. Cells9, 2144. https://doi.org/10.3390/cells9102144 (2020).
doi: 10.3390/cells9102144 pubmed: 32977400 pmcid: 7598166
Werner, C. J. et al. MCNP version 6.2 release notes. Tech. Rep., Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) (2018).
Scott, J. A. ICRU Report, 1992. Report 46: Photon, Electron and Neutron Interaction Data for Body Tissues. International Comission on Radiation Units and Measurements, Betlesda, D. (Soc Nuclear Med, 1992).
Chadwick, M. et al. ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. Nuclear data sheets107, 2931–3060, https://doi.org/10.1016/j.nds.2006.11.001 (2006). Evaluated Nuclear Data File ENDF/B-VII.0.
Liu, Y.-W., Huang, T., Jiang, S. & Liu, H. Renovation of epithermal neutron beam for BNCT at thor. Appl. Radiat. Isotopes61, 1039–1043. https://doi.org/10.1016/j.apradiso.2004.05.042 (2004).
doi: 10.1016/j.apradiso.2004.05.042
Kononov, O. et al. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy. Appl. Radiat. Isotopes61, 1009–1013. https://doi.org/10.1016/j.apradiso.2004.05.028 (2004).
doi: 10.1016/j.apradiso.2004.05.028
Seppälä, T. et al.FiR 1 epithermal neutron beam model and dose calculation for treatment planning in neutron capture therapy. Ph.D. thesis, Helsingin yliopisto (2002).
Koivunoro, H. Dosimetry and dose planning in boron neutron capture therapy: Monte Carlo studies. Ph.D. thesis, University of Helsinki (2012).
Sakurai, Y., Maruhashi, A. & Ono, K. The irradiation system and dose estimation joint-system for nct wider application in kyoto university. Appl. Radiat. Isotopes61, 829–833. https://doi.org/10.1016/j.apradiso.2004.05.036 (2004).
doi: 10.1016/j.apradiso.2004.05.036
Tanaka, H. et al. Characteristics comparison between a cyclotron-based neutron source and kur-hwnif for boron neutron capture therapy. Nucl. Instrum. Methods Phys. Res. Sect. B267, 1970–1977. https://doi.org/10.1016/j.nimb.2009.03.095 (2009).
doi: 10.1016/j.nimb.2009.03.095
Sakurai, Y. et al. Advances in boron neutron capture therapy (BNCT) at Kyoto university-from reactor-based BNCT to accelerator-based BNCT. J. Korean Phys. Soc.67, 76–81. https://doi.org/10.3938/jkps.67.76 (2015).
doi: 10.3938/jkps.67.76
description and validation. Giusti, V., Munck af Rosenschöld, P. M., Sköld, K., Montagnini, B. & Capala, J. Monte carlo model of the Studsvik BNCT clinical beam. Med. Phys.30, 3107–3117. https://doi.org/10.1118/1.1626120 (2003).
doi: 10.1118/1.1626120
Kiyanagi, Y., Sakurai, Y., Kumada, H. & Tanaka, H. Status of accelerator-based BNCT projects worldwide. In AIP Conference Proceedings, vol. 2160, https://doi.org/10.1063/1.5127704 (AIP Publishing, 2019).
Tanaka, H. et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (c-bens). Appl. Radiat. Isotopes69, 1642–1645. https://doi.org/10.1016/j.apradiso.2011.03.020 (2011).
doi: 10.1016/j.apradiso.2011.03.020
Mastinu, P. et al. Micro-channel-based high specific power lithium target. Il Nuovo Cimento C38, 1–7. https://doi.org/10.1393/ncc/i2015-5193-y (2015).
doi: 10.1393/ncc/i2015-5193-y
Verdera, A., Torres-Sànchez, P., Praena, J. & Porras, I. Study of the out-of-field dose from an accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot.212, 111458. https://doi.org/10.1016/j.apradiso.2024.111458 (2024).
doi: 10.1016/j.apradiso.2024.111458 pubmed: 39111051

Auteurs

Antònia Verdera (A)

Department of Atomic, Molecular and Nuclear Physics, Universidad de Granada, 18072, Granada, Spain.

Javier Praena (J)

Department of Atomic, Molecular and Nuclear Physics, Universidad de Granada, 18072, Granada, Spain. jpraena@ugr.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH