Novel endothelial progenitor cells populations as biomarkers of damage and remission in systemic lupus erythematosus.
Damage
EPCs clusters
Endothelial progenitor cells
Remission
Systemic lupus erythematosus
Journal
Arthritis research & therapy
ISSN: 1478-6362
Titre abrégé: Arthritis Res Ther
Pays: England
ID NLM: 101154438
Informations de publication
Date de publication:
28 Sep 2024
28 Sep 2024
Historique:
received:
11
01
2024
accepted:
04
09
2024
medline:
29
9
2024
pubmed:
29
9
2024
entrez:
28
9
2024
Statut:
epublish
Résumé
Endothelial progenitor cells (EPCs) are essential for maintenance of vascular homeostasis and stability, key processes in the pathogenesis of systemic lupus erythematosus (SLE). However, the role and phenotypic characterization of EPCs populations in SLE have not been completely elucidated. To identify EPCs specific subpopulations in patients with SLE using a novel flow cytometry tool. Peripheral blood mononuclear cells (PBMCs) were isolated from patients with SLE and healthy controls (HC). mRNA and surface protein expression were determined by quantitative PCR (qPCR) and flow cytometry. Clusters identification and characterization were performed using tSNE-CUDA dimensionality reduction algorithms. tSNE-CUDA analysis identified eight different clusters in PBMCs from HC and patients with SLE. Three of these clusters had EPC-like phenotype and the expression was elevated in patients with SLE. Moreover, four SLE-associated subclusters were found mainly expressed in patients with SLE, being only present in patients in remission with SLE and significantly associated with the 2021 Definition of Remission in SLE. Importantly, we also identified specific clusters in SLE patients with organ damage, according to the Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology damage index (SDI). These clusters showed an EPC-like phenotype, but the expression of angiogenic markers was lower compared to HC or patients without organ damage, suggesting an impaired angiogenic function. Our novel approach identified clusters of EPCs in patients with SLE that are associated with remission and damage. Therefore, these clusters might be useful biomarkers to predict disease progression and severity in SLE pathogenesis.
Identifiants
pubmed: 39342288
doi: 10.1186/s13075-024-03397-4
pii: 10.1186/s13075-024-03397-4
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
170Informations de copyright
© 2024. The Author(s).
Références
Ballocca F, D’Ascenzo F, Moretti C, Omedè P, Cerrato E, Barbero U, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): A systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(11):1435–41.
doi: 10.1177/2047487314546826
pubmed: 25139772
Lin CY, Shih CC, Yeh CC, Chou WH, Chen TL, Liao CC. Increased risk of acute myocardial infarction and mortality in patients with systemic lupus erythematosus: two nationwide retrospective cohort studies. Int J Cardiol. 2014;176(3):847–51.
doi: 10.1016/j.ijcard.2014.08.006
pubmed: 25156834
Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–32.
doi: 10.1038/s41584-021-00668-1
pubmed: 34345022
pmcid: 8982275
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol. 2022;18(5):286–300.
doi: 10.1038/s41584-022-00770-y
pubmed: 35393604
Ambler WG, Kaplan MJ. Vascular damage in systemic lupus erythematosus. Nat Rev Nephrol. 2024;20(4):251–65.
Morrone D, Picoi MEL, Felice F, De Martino A, Scatena C, Spontoni P, et al. Endothelial progenitor cells: An appraisal of relevant data from bench to bedside. Int J Mol Sci. 2021;22(23):12874.
doi: 10.3390/ijms222312874
pubmed: 34884679
pmcid: 8657735
King TFJ, McDermott JH. Endothelial progenitor cells and cardiovascular disease. J Stem Cells. 2014;9(2):93–106.
pubmed: 25158158
Heinisch PP, Bello C, Emmert MY, Carrel T, Dreßen M, Hörer J, et al. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells. 2022;11(10):1678.
doi: 10.3390/cells11101678
pubmed: 35626716
pmcid: 9139418
Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, et al. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol Med. 2011;17(9–10):1045–55.
doi: 10.2119/molmed.2011.00129
pubmed: 21670847
pmcid: 3188859
Zhao H, He Y. The Inhibitory Effect of Lysophosphatidylcholine on Proangiogenesis of Human CD34(+) Cells Derived Endothelial Progenitor Cells. Front Mol Biosci. 2021;8: 682367.
doi: 10.3389/fmolb.2021.682367
pubmed: 34179086
pmcid: 8223510
Denny MF, Thacker S, Mehta H, Somers EC, Dodick T, Barrat FJ, et al. Interferon-α promotes abnormal vasculogenesis in lupus: A potential pathway for premature atherosclerosis. Blood. 2007;110(8):2907–15.
doi: 10.1182/blood-2007-05-089086
pubmed: 17638846
pmcid: 2018671
Moonen JRAJ, de Leeuw K, van Seijen XJGY, Kallenberg CGM, van Luyn MJA, Bijl M, et al. Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res Ther. 2007;9(4):1–10.
doi: 10.1186/ar2283
Westerweel PE, Luijten RKMAC, Hoefer IE, Koomans HA, Derksen RHWM, Verhaar MC. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann Rheum Dis. 2007;66(7):865–70.
doi: 10.1136/ard.2006.065631
pubmed: 17329307
pmcid: 1955125
Deng XL, Li XX, Liu XY, Sun L, Liu R. Comparative study on circulating endothelial progenitor cells in systemic lupus erythematosus patients at active stage. Rheumatol Int. 2010;30(11):1429–36.
doi: 10.1007/s00296-009-1156-4
pubmed: 19847436
Grisar J, Steiner CW, Bonelli M, Karonitsch T, Schwarzinger I, Weigel G, et al. Systemic lupus erythematosus patients exhibit functional deficiencies of endothelial progenitor cells. Rheumatology. 2008;47(10):1476–83.
doi: 10.1093/rheumatology/ken286
pubmed: 18660509
Ablin JN, Boguslavski V, Aloush V, Elkayam O, Paran D, Levartovski D, et al. Enhanced adhesive properties of endothelial progenitor cells (EPCs) in patients with SLE. Rheumatol Int. 2011;31(6):773–8.
doi: 10.1007/s00296-010-1377-6
pubmed: 20213291
Robak E, Kierstan M, Cebula B, Krawczynska A, Sysa-Jedrzejowska A, Wierzbowska A, et al. Circulating endothelial cells and angiogenic proteins in patients with systemic lupus erythematosus. Lupus. 2009;18(4):332–41.
doi: 10.1177/0961203308097572
pubmed: 19276301
Rodríguez-Carrio J, Prado C, De Paz B, López P, Gómez J, Alperi-López M, et al. Circulating endothelial cells and their progenitors in systemic lupus erythematosus and early rheumatoid arthritis patients. Rheumatology (United Kingdom). 2012;51(10):1775–84.
doi: 10.1093/rheumatology/kes152
Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151–9.
doi: 10.1136/annrheumdis-2018-214819
pubmed: 31383717
Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis and Rheumatology. 2019;71(9):1400–12.
doi: 10.1002/art.40930
pubmed: 31385462
Sobchak C, Akhtari S, Harvey P, Gladman D, Chandran V, Cook R, et al. Value of Carotid Ultrasound in Cardiovascular Risk Stratification in Patients With Psoriatic Disease. Arthritis and Rheumatology. 2019;71(10):1651–9.
doi: 10.1002/art.40925
pubmed: 31165591
Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis. 2016;75(9):1615–21.
doi: 10.1136/annrheumdis-2015-207726
pubmed: 26458737
van Vollenhoven RF, Bertsias G, Doria A, Isenberg D, Morand E, Petri MA, et al. 2021 DORIS definition of remission in SLE: Final recommendations from an international task force. Lupus Sci Med. 2021;8(1):1–9.
Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996Mar;39(3):363–9.
doi: 10.1002/art.1780390303
pubmed: 8607884
Jesus D, Matos A, Henriques C, Zen M, Larosa M, Iaccarino L, et al. Derivation and validation of the SLE Disease Activity Score (SLE-DAS): a new SLE continuous measure with high sensitivity for changes in disease activity. Ann Rheum Dis. 2019;78(3):365–71.
doi: 10.1136/annrheumdis-2018-214502
pubmed: 30626657
Lübbers J, Brink M, van de Stadt LA, Vosslamber S, Wesseling JG, van Schaardenburg D, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776–80.
doi: 10.1136/annrheumdis-2012-202753
pubmed: 23434571
Rafael-Vidal C, Martínez-Ramos S, Malvar-Fernández B, Altabás-González I, Mouriño C, Veale DJ, et al. Type I Interferons induce endothelial destabilization in Systemic Lupus Erythematosus in a Tie2-dependent manner. Front Immunol. 2023 Dec 14;14(December):1061.1–1061. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2023.1277267/full .
Delorme B, Basire A, Gentile C, Sabatier F, Monsonis F, Desouches C, et al. Presence of endothelial progenitor cells, distinct from mature endothelial cells, within CD146+ blood cells. Thromb Haemost. 2005;94(6):1270–9.
doi: 10.1160/TH05-07-0499
pubmed: 16411405
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, et al. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun. May2020;2020(112): 102486.
doi: 10.1016/j.jaut.2020.102486
Szekanecz Z, Koch AE. Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 2007;3(11):635–43.
doi: 10.1038/ncprheum0647
pubmed: 17968334
Parodis I, Gokaraju S, Zickert A, Vanarsa K, Zhang T, Habazi D, et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology (Oxford). 2020Sep;59(9):2237–49.
doi: 10.1093/rheumatology/kez528
pubmed: 31722419
Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res. 2019;115(9):1425–34.
doi: 10.1093/cvr/cvz132
pubmed: 31119265
Somers EC, Zhao W, Lewis EE, Wang L, Wing JJ, Sundaram B, et al. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PLoS One. 2012;7(5):e37000.
doi: 10.1371/journal.pone.0037000
pubmed: 22606325
pmcid: 3351452
Wu GC, Liu HR, Leng RX, Li XP, Li XM, Pan HF, et al. Subclinical atherosclerosis in patients with systemic lupus erythematosus: A systemic review and meta-analysis. Autoimmun Rev. 2016;15(1):22–37. Available from: https://doi.org/10.1016/j.autrev.2015.10.002 .
Privratsky JR, Tilkens SB, Newman DK, Newman PJ. PECAM-1 dampens cytokine levels during LPS-induced endotoxemia by regulating leukocyte trafficking. Life Sci. 2012;90(5–6):177–84. Available from: https://doi.org/10.1016/j.lfs.2011.11.002 .
Rui Y, Liu X, Li N, Jiang Y, Chen G, Cao X, et al. Expression of Concern: PECAM-1 Ligation Negatively Regulates TLR4 Signaling in Macrophages. J Immunol. 2023;211(8):1251–1251.
doi: 10.4049/jimmunol.2300468
pubmed: 37782858