LYP regulates SLP76 and other adaptor proteins in T cells.


Journal

Biological research
ISSN: 0717-6287
Titre abrégé: Biol Res
Pays: England
ID NLM: 9308271

Informations de publication

Date de publication:
28 Sep 2024
Historique:
received: 30 12 2023
accepted: 06 08 2024
medline: 29 9 2024
pubmed: 29 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

The LYP tyrosine phosphatase presents a SNP (1858C > T) that increases the risk of developing autoimmune diseases such as type I diabetes and arthritis. It remains unclear how this SNP affects LYP function and promotes the development of these diseases. The scarce information about LYP substrates is in part responsible for the poor understanding of LYP function. In this study, we identify in T lymphocytes several adaptor proteins as potential substrates targeted by LYP, including FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2. We also show that LYP co-localizes with SLP76 in microclusters, upon TCR engagement. These data indicate that LYP may modulate T cell activation by dephosphorylating several adaptor proteins, such as FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2 upon TCR engagement.

Sections du résumé

BACKGROUND BACKGROUND
The LYP tyrosine phosphatase presents a SNP (1858C > T) that increases the risk of developing autoimmune diseases such as type I diabetes and arthritis. It remains unclear how this SNP affects LYP function and promotes the development of these diseases. The scarce information about LYP substrates is in part responsible for the poor understanding of LYP function.
RESULTS RESULTS
In this study, we identify in T lymphocytes several adaptor proteins as potential substrates targeted by LYP, including FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2. We also show that LYP co-localizes with SLP76 in microclusters, upon TCR engagement.
CONCLUSIONS CONCLUSIONS
These data indicate that LYP may modulate T cell activation by dephosphorylating several adaptor proteins, such as FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2 upon TCR engagement.

Identifiants

pubmed: 39342392
doi: 10.1186/s40659-024-00536-8
pii: 10.1186/s40659-024-00536-8
doi:

Substances chimiques

Adaptor Proteins, Signal Transducing 0
SLP-76 signal Transducing adaptor proteins 0
Phosphoproteins 0
Receptors, Antigen, T-Cell 0
Protein Tyrosine Phosphatases EC 3.1.3.48

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

69

Subventions

Organisme : Consejería de Sanidad, Junta de Castilla y León
ID : CCVC8485
Organisme : Agencia Estatal de Investigación
ID : MCIN/AEI/10.13039/501100011033
Organisme : Junta de Castilla y León
ID : CLC-2017-01

Informations de copyright

© 2024. The Author(s).

Références

Vang T, Miletic A V, Arimura Y, Tautz L, Rickert RC, Mustelin T. Protein tyrosine phosphatases in autoimmunity. 2008; 26:29–55. https://doi.org/10.1146/annurev.immunol.26.021607.090418
Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med. 1999;189(1):111–21. https://doi.org/10.1084/jem.189.1.111
doi: 10.1084/jem.189.1.111 pubmed: 9874568 pmcid: 1887684
Badour K, Zhang J, Shi F, Leng Y, Collins M, Siminovitch KA. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich Syndrome Protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J Exp Med. 2004;199(1):99–111. https://doi.org/10.1084/jem.20030976
doi: 10.1084/jem.20030976 pubmed: 14707117 pmcid: 1887720
Marcos T, Ruiz-Martín V, De La Puerta ML, Trinidad AG, Rodríguez MDC, De La Fuente MA, et al. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J. 2014;281(17):3844–54. https://doi.org/10.1111/febs.12912
doi: 10.1111/febs.12912 pubmed: 25040622
Manso JA, Marcos T, Ruiz-Martín V, Casas J, Alcón P, Sánchez Crespo M, et al. PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cell Mol Life Sci. 2022;79(2):131.  https://doi.org/10.1007/s00018-022-04173-w .
doi: 10.1007/s00018-022-04173-w pubmed: 35152348 pmcid: 8840930
Holzinger D, Roth J. Alarming consequences-autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr Opin Rheumatol. 2016;28:550–9. https://doi.org/10.1097/BOR.0000000000000314
doi: 10.1097/BOR.0000000000000314 pubmed: 27464597
Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem. 2006;281:11002–10.  https://doi.org/10.1074/jbc.M600498200
doi: 10.1074/jbc.M600498200 pubmed: 16461343
Yu X, Chen M, Zhang S, Yu ZH, Sun JP, Wang L, et al. Substrate specificity of lymphoid-specific tyrosine phosphatase (Lyp) and identification of Src kinase-associated protein of 55 kDa homolog (SKAP-HOM) as a Lyp substrate. J Biol Chem. 2011;286:30526–34. https://doi.org/10.1074/jbc.M111.254722
doi: 10.1074/jbc.M111.254722 pubmed: 21719704 pmcid: 3162412
Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood. 1999;93:2013–24.
doi: 10.1182/blood.V93.6.2013.406k25_2013_2024 pubmed: 10068674
Brownlie RJ, Miosge LA, Vassilakos D, Svensson LM, Cope A, Zamoyska R. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci Signal. 2012. https://doi.org/10.1126/scisignal.2003365
doi: 10.1126/scisignal.2003365 pubmed: 23193160 pmcid: 5836999
Arechiga AF, Habib T, He Y, Zhang X, Zhang Z-Y, Funk A, et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J Immunol. 2009;182:3343–7. https://doi.org/10.4049/jimmunol.0713370
doi: 10.4049/jimmunol.0713370 pubmed: 19265110
Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM, Mikulski Z, et al. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity. 2013;39:111–22. https://doi.org/10.1016/j.immuni.2013.06.013
doi: 10.1016/j.immuni.2013.06.013 pubmed: 23871208
Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR, et al. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Investig. 2016;126(5):1783–1800. https://doi.org/10.1172/JCI83669
doi: 10.1172/JCI83669 pubmed: 27043286 pmcid: 4855944
Kingston RE, Chen CA, Rose JK. Calcium phosphate transfection. Curr Protoc Mol Biol. 2003;63:9.1.1-9.1.11. https://doi.org/10.1002/0471142727.mb0901s63 .
doi: 10.1002/0471142727.mb0901s63
de Puerta ML, Trinidad AG, del Rodríguez MC, Bogetz J, Crespo MS, Mustelin T, et al. Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLoS ONE. 2009;4:e4431. https://doi.org/10.1371/journal.pone.0004431
doi: 10.1371/journal.pone.0004431 pubmed: 19221593 pmcid: 2637541
Alonso A, Rahmouni S, Williams S, van Stipdonk M, Jaroszewski L, Godzik A, et al. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat Immunol. 2003;4:44–48. https://doi.org/10.1038/ni856 .
doi: 10.1038/ni856 pubmed: 12447358
Tiganis T, Bennett AM. Protein tyrosine phosphatase function: the substrate perspective. Biochem J. 2007;402(1):1–15. https://doi.org/10.1042/BJ20061548
doi: 10.1042/BJ20061548 pubmed: 17238862 pmcid: 1783993
Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619. https://doi.org/10.1146/annurev.immunol.021908.132706
doi: 10.1146/annurev.immunol.021908.132706 pubmed: 19132916 pmcid: 2740335
de la Puerta ML, Trinidad AG, del Rodríguez MC, de Pereda JM, Sánchez Crespo M, Bayón Y, et al. The Autoimmunity risk variant LYP-W620 cooperates with CSK in the regulation of TCR signaling. PLoS ONE. 2013;8:e54569. https://doi.org/10.1371/journal.pone.0054569
doi: 10.1371/journal.pone.0054569 pubmed: 23359562 pmcid: 3554717
Barreira M, Fabbiano S, Couceiro JR, Torreira E, Martínez-Torrecuadrada JL, Montoya G, et al. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins. Sci Signal. 2014;7(321):ra35. https://doi.org/10.1126/scisignal.2004993
doi: 10.1126/scisignal.2004993 pubmed: 24736456
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20. https://doi.org/10.1093/nar/gku1267
doi: 10.1093/nar/gku1267 pubmed: 25514926
Coussens NP, Hayashi R, Brown PH, Balagopalan L, Balbo A, Akpan I, et al. Multipoint binding of the SLP-76 SH2 domain to ADAP is critical for oligomerization of SLP-76 signaling complexes in stimulated T cells. Mol Cell Biol. 2013;33:4140–51. https://doi.org/10.1128/MCB.00410-13
doi: 10.1128/MCB.00410-13 pubmed: 23979596 pmcid: 3811887
Koretzky GA, Abtahian F, Silverman MA. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol. 2006;6:67–78. https://doi.org/10.1038/nri1750
doi: 10.1038/nri1750 pubmed: 16493428
Bustelo XR. Vav family exchange factors: an integrated regulatory and functional view. Small GTPases. 2014. 2014;5(2):9. https://doi.org/10.4161/21541248.2014.973757 .
doi: 10.4161/21541248.2014.973757 pubmed: 25483299
Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119. https://doi.org/10.1146/annurev-immunol-032713-120249
doi: 10.1146/annurev-immunol-032713-120249 pubmed: 24364806
Palma A, Tinti M, Paoluzi S, Santonico E, Brandt BW, Hooft Van Huijsduijnen R, et al. Both intrinsic substrate preference and network context contribute to substrate selection of classical tyrosine phosphatases. J Biol Chem. 2017;292:4942–4952. https://doi.org/10.1074/jbc.M116.757518
doi: 10.1074/jbc.M116.757518 pubmed: 28159843 pmcid: 5377807
Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 2009;136:352–63.  https://doi.org/10.1016/j.cell.2008.11.038
doi: 10.1016/j.cell.2008.11.038 pubmed: 19167335 pmcid: 2638020
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711. https://doi.org/10.1016/j.cell.2004.05.018 .
doi: 10.1016/j.cell.2004.05.018 pubmed: 15186772
Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell. 2000;6:1401–12. https://doi.org/10.1016/S1097-2765(00)00137-4
doi: 10.1016/S1097-2765(00)00137-4 pubmed: 11163213
Ayoub E, Hall A, Scott AM, Chagnon LJ, Miquel G, Hallé M, et al. Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTP-PEST in the control of cell motility. J Biol Chem. 2013;288:25739–48.  https://doi.org/10.1074/jbc.M113.501007
doi: 10.1074/jbc.M113.501007 pubmed: 23897807 pmcid: 3764781
Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21:107–37. https://doi.org/10.1146/annurev.immunol.21.120601.140946
doi: 10.1146/annurev.immunol.21.120601.140946 pubmed: 12414720
Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32:766–77. https://doi.org/10.1016/j.immuni.2010.05.011
doi: 10.1016/j.immuni.2010.05.011 pubmed: 20541955 pmcid: 2996607
Acuto O, di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol. 2008;8:699–712. https://doi.org/10.1038/nri2397
doi: 10.1038/nri2397 pubmed: 18728635
Singer AL, Bunnell SC, Obstfeld AE, Jordan MS, Wu JN, Myung PS, et al. Roles of the proline-rich domain in SLP-76 subcellular localization and T cell function. J Biol Chem. 2004;279(15):15481–90.  https://doi.org/10.1074/jbc.M313339200
doi: 10.1074/jbc.M313339200 pubmed: 14722089
Jordan MS, Koretzky GA. Coordination of receptor signaling in multiple hematopoietic cell lineages by the adaptor protein SLP-76. Cold Spring Harb Perspect Biol. 2010;2(4):a002501. https://doi.org/10.1101/cshperspect.a002501
doi: 10.1101/cshperspect.a002501 pubmed: 20452948 pmcid: 2845197
Geng L, Raab M, Rudd CE. Cutting edge: SLP-76 cooperativity with FYB/FYN-T in the Up-regulation of TCR-driven IL-2 transcription requires SLP-76 binding to FYB at Tyr595 and Tyr651. J Immunol. 1999;163(11):5753–7
doi: 10.4049/jimmunol.163.11.5753 pubmed: 10570256
Wang H, Rudd CE. SKAP-55, SKAP-55-related and ADAP adaptors modulate integrin-mediated immune-cell adhesion. Trends Cell Biol. 2008;18:486–93. https://doi.org/10.1016/j.tcb.2008.07.005
doi: 10.1016/j.tcb.2008.07.005 pubmed: 18760924 pmcid: 3512129
Huang Y, Burkhardt JK. T-cell-receptor-dependent actin regulatory mechanisms. J Cell Sci. 2007;120:723–30. https://doi.org/10.1242/jcs.000786
doi: 10.1242/jcs.000786 pubmed: 17314246
Skokowa J, Klimiankou M, Klimenkova O, Lan D, Gupta K, Hussein K, et al. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis. Nat Med. 2012;18:1550–9. https://doi.org/10.1038/nm.2958
doi: 10.1038/nm.2958 pubmed: 23001182 pmcid: 3941918
Raab M, Da Silva AJ, Findell PR, Rudd CE. Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCRζ/CD3 induction of interleukin-2. Immunity. 1997;6:155–64. https://doi.org/10.1016/S1074-7613(00)80422-7
doi: 10.1016/S1074-7613(00)80422-7 pubmed: 9047237
Wardenburg JB, Fu C, Jackman JK, Flotow H, Wilkinson SE, Williams DH, et al. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J Biol Chem. 1996;271:19641–4.  https://doi.org/10.1074/jbc.271.33.19641
doi: 10.1074/jbc.271.33.19641
Ksionda O, Saveliev A, Köchl R, Rapley J, Faroudi M, Smith-Garvin JE, et al. Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci. 2012;125:5302–14. https://doi.org/10.1242/jcs.105148
doi: 10.1242/jcs.105148 pubmed: 22956543 pmcid: 3561853
Stanford SM, Krishnamurthy D, Falk MD, Messina R, Debnath B, Li S, et al. Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cell. J Med Chem. 2011;54:1640–54. https://doi.org/10.1021/jm101202j
doi: 10.1021/jm101202j pubmed: 21341673 pmcid: 3086468

Auteurs

Virginia Ruiz-Martín (V)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.

Tamara Marcos (T)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.

José María de Pereda (JM)

Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain.

Mariano Sánchez-Crespo (M)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.

Miguel Angel de la Fuente (MA)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.

Yolanda Bayón (Y)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain. ybayon@ibgm.uva.es.

Andrés Alonso (A)

Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain. andres.alonso.garcia@uva.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH