Whole-Body Vibration Affects Hippocampal Choline Acetyltransferase and Synaptophysin Expression and Improves Spatial Memory in Young Adult Mice.
acetylcholine
cholinergic system
motor coordination
passive exercise
synaptophysin
Journal
Journal of integrative neuroscience
ISSN: 0219-6352
Titre abrégé: J Integr Neurosci
Pays: Singapore
ID NLM: 101156357
Informations de publication
Date de publication:
23 Sep 2024
23 Sep 2024
Historique:
received:
27
04
2024
revised:
09
06
2024
accepted:
02
07
2024
medline:
30
9
2024
pubmed:
30
9
2024
entrez:
30
9
2024
Statut:
ppublish
Résumé
Beneficial effects of whole-body vibration (WBV) on brain and musculoskeletal health in mice have been demonstrated, but underlying mechanisms remain relatively unrevealed. WBV improves attention and memory performance in mice, putatively through stimulation of the cholinergic system. Here, we investigated the effects of WBV on the septo-hippocampal cholinergic system. Young C57BL/6 mice (8 weeks old) were subjected to 10 min WBV/day (mechanical vibration: 30 Hz; ~0.1-μm peak-to-peak displacement), 5X/week for 5 weeks. In Experiment 1, choline acetyltransferase (ChAT)-immunoreactivity in the septum and hippocampus was analyzed either 2 or 24 h after the last WBV session. Pseudo-WBV-treated mice (same handling procedure as WBV, but no vibrations) served as controls. In Experiment 2, the longitudinal profile of ChAT-immunoreactivity was analyzed in the hippocampus after 1, 2, 3, 4, or 5 weeks of WBV. In addition, synaptophysin immunostaining was performed at either 2 and 5 weeks of WBV. Mice housed 1/cage during the entire experiment served as controls. The balance-beam test was used to monitor the functional impact of WBV. In Experiment 3, a Y-maze reference-memory test was performed after 5 weeks of WBV to obtain a functional cognitive outcome measure of WBV. Pseudo-WBV treated mice served as controls. In Experiment 1, ChAT-immunoreactivity was significantly enhanced after the last WBV session of the 5-week period. This was found in the septum, Cornu Ammonis 1 (CA1), CA3, and dentate gyrus, and was dependent on layer and time-point (2 or 24 h). Experiment 2 revealed that, ChAT-immunoreactivity was lower after 2 weeks of WBV, whereas it was significantly higher after 5 weeks (similar to in Experiment 1). Immunostaining for synaptophysin, a marker for synaptic density, was also significantly higher after 5 weeks of WBV, but not significantly lower after 2 weeks, as was ChAT. WBV-treated groups performed significantly better than did controls on the balance beam from week 3 onwards. Experiment 3 showed that WBV-treated mice had better spatial-reference memory performance in the Y-maze test than did pseudo-WBV controls. Our results indicate that WBV stimulates the septo-hippocampal cholinergic system in a gradual and dynamic way that may contribute to improved spatial-memory performance. This finding suggests that WBV, by upregulation of the septo-hippocampal cholinergic system, may be considered a valuable therapeutic strategy to enhance brain functions in aging, neurodegenerative, and other brain diseases.
Sections du résumé
BACKGROUND
BACKGROUND
Beneficial effects of whole-body vibration (WBV) on brain and musculoskeletal health in mice have been demonstrated, but underlying mechanisms remain relatively unrevealed. WBV improves attention and memory performance in mice, putatively through stimulation of the cholinergic system. Here, we investigated the effects of WBV on the septo-hippocampal cholinergic system.
METHODS
METHODS
Young C57BL/6 mice (8 weeks old) were subjected to 10 min WBV/day (mechanical vibration: 30 Hz; ~0.1-μm peak-to-peak displacement), 5X/week for 5 weeks. In Experiment 1, choline acetyltransferase (ChAT)-immunoreactivity in the septum and hippocampus was analyzed either 2 or 24 h after the last WBV session. Pseudo-WBV-treated mice (same handling procedure as WBV, but no vibrations) served as controls. In Experiment 2, the longitudinal profile of ChAT-immunoreactivity was analyzed in the hippocampus after 1, 2, 3, 4, or 5 weeks of WBV. In addition, synaptophysin immunostaining was performed at either 2 and 5 weeks of WBV. Mice housed 1/cage during the entire experiment served as controls. The balance-beam test was used to monitor the functional impact of WBV. In Experiment 3, a Y-maze reference-memory test was performed after 5 weeks of WBV to obtain a functional cognitive outcome measure of WBV. Pseudo-WBV treated mice served as controls.
RESULTS
RESULTS
In Experiment 1, ChAT-immunoreactivity was significantly enhanced after the last WBV session of the 5-week period. This was found in the septum, Cornu Ammonis 1 (CA1), CA3, and dentate gyrus, and was dependent on layer and time-point (2 or 24 h). Experiment 2 revealed that, ChAT-immunoreactivity was lower after 2 weeks of WBV, whereas it was significantly higher after 5 weeks (similar to in Experiment 1). Immunostaining for synaptophysin, a marker for synaptic density, was also significantly higher after 5 weeks of WBV, but not significantly lower after 2 weeks, as was ChAT. WBV-treated groups performed significantly better than did controls on the balance beam from week 3 onwards. Experiment 3 showed that WBV-treated mice had better spatial-reference memory performance in the Y-maze test than did pseudo-WBV controls.
CONCLUSIONS
CONCLUSIONS
Our results indicate that WBV stimulates the septo-hippocampal cholinergic system in a gradual and dynamic way that may contribute to improved spatial-memory performance. This finding suggests that WBV, by upregulation of the septo-hippocampal cholinergic system, may be considered a valuable therapeutic strategy to enhance brain functions in aging, neurodegenerative, and other brain diseases.
Identifiants
pubmed: 39344235
pii: S0219-6352(24)00801-5
doi: 10.31083/j.jin2309173
doi:
Substances chimiques
Synaptophysin
0
Choline O-Acetyltransferase
EC 2.3.1.6
Syp protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
173Informations de copyright
© 2024 The Author(s). Published by IMR Press.