Herbal Amara extract induces gastric fundus relaxation via inhibition of the M2 muscarinic receptor.
Phytotherapy
dyspepsia
gastric fundus
herbal medicine
plant extract
signs and symptoms, digestive
stomach diseases
Journal
Neurogastroenterology and motility
ISSN: 1365-2982
Titre abrégé: Neurogastroenterol Motil
Pays: England
ID NLM: 9432572
Informations de publication
Date de publication:
30 Sep 2024
30 Sep 2024
Historique:
revised:
05
07
2024
received:
03
03
2024
accepted:
13
09
2024
medline:
30
9
2024
pubmed:
30
9
2024
entrez:
30
9
2024
Statut:
aheadofprint
Résumé
Impaired gastric accommodation is one of the most frequent symptoms of functional dyspepsia. The safety and efficacy of conventional treatments remain to be proven and alternative herbal therapies have been proposed to alleviate gastrointestinal symptoms. This preclinical study examined the role of herbal Amara extract (containing Artemisia absinthium, Centaurium erythraea, Cichorium intybus, Gentiana lutea, Juniperus communis, Achillea millefolium, Peucedanum ostruthium, Salvia officinalis, and Taraxacum extracts) on gastric (fundus) accommodation and the possible implication of muscarinic receptors in its regulation. The effect of Amara extract on fundus motility was investigated in organ baths of smooth muscle strips isolated from the fundus of guinea pigs, and the role of the muscarinic receptor pathway was evaluated using functional and radioligand binding assays in cell lines expressing the M2 or M3 muscarinic receptor. Amara extract inhibited carbachol-induced contraction of guinea pig smooth muscle strips in a dose-dependent manner. This relaxant effect was not affected by the M3 antagonist J-104129. Amara extract also inhibited M2, but not M3, receptor activity in CHO-K1 cells (IC Amara extract relaxes gastric smooth muscles by inhibiting the M2 muscarinic receptor. This study suggests the potential benefit of Amara extract for patients with impaired gastric accommodation.
Sections du résumé
BACKGROUND
BACKGROUND
Impaired gastric accommodation is one of the most frequent symptoms of functional dyspepsia. The safety and efficacy of conventional treatments remain to be proven and alternative herbal therapies have been proposed to alleviate gastrointestinal symptoms. This preclinical study examined the role of herbal Amara extract (containing Artemisia absinthium, Centaurium erythraea, Cichorium intybus, Gentiana lutea, Juniperus communis, Achillea millefolium, Peucedanum ostruthium, Salvia officinalis, and Taraxacum extracts) on gastric (fundus) accommodation and the possible implication of muscarinic receptors in its regulation.
METHODS
METHODS
The effect of Amara extract on fundus motility was investigated in organ baths of smooth muscle strips isolated from the fundus of guinea pigs, and the role of the muscarinic receptor pathway was evaluated using functional and radioligand binding assays in cell lines expressing the M2 or M3 muscarinic receptor.
KEY RESULTS
RESULTS
Amara extract inhibited carbachol-induced contraction of guinea pig smooth muscle strips in a dose-dependent manner. This relaxant effect was not affected by the M3 antagonist J-104129. Amara extract also inhibited M2, but not M3, receptor activity in CHO-K1 cells (IC
CONCLUSION AND INFERENCES
CONCLUSIONS
Amara extract relaxes gastric smooth muscles by inhibiting the M2 muscarinic receptor. This study suggests the potential benefit of Amara extract for patients with impaired gastric accommodation.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14924Informations de copyright
© 2024 The Author(s). Neurogastroenterology & Motility published by John Wiley & Sons Ltd.
Références
Dall'Acqua S, Bolego C, Cignarella A, Gaion RM, Innocenti G. Vasoprotective activity of standardized Achillea millefolium extract. Phytomedicine. 2011;18(12):1031‐1036. doi:10.1016/j.phymed.2011.05.005
Yilmaz MA, Ertas A, Yener I, et al. A comprehensive LC‐MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in achillea species: A detailed examination of A. Coarctata and A. Monocephala. J Pharm Biomed Anal. 2018;154:413‐424. doi:10.1016/j.jpba.2018.02.059
Rahmani Samani M, D'Urso G, Montoro P, Ghasemi Pirbalouti A, Piacente S. Effects of bio‐fertilizers on the production of specialized metabolites in Salvia officinalis L. leaves: an analytical approach based on LC‐ESI/LTQ‐orbitrap/MS and multivariate data analysis. J Pharm Biomed Anal. 2021;197:113951. doi:10.1016/j.jpba.2021.113951
Bergantin C, Maietti A, Cavazzini A, et al. Bioaccessibility and HPLC‐MS/MS chemical characterization of phenolic antioxidants in red chicory (Cichorium intybus). J Funct Foods. 2017;33:94‐102. doi:10.1016/j.jff.2017.02.037
Aberham A, Pieri V, Croom EM, Ellmerer E, Stuppner H. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC‐MS and RP‐HPLC. J Pharm Biomed Anal. 2011;54(3):517‐525. doi:10.1016/j.jpba.2010.09.030
Jedrejek D, Lis B, Rolnik A, Stochmal A, Olas B. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem Toxicol. 2019;126:233‐247. doi:10.1016/j.fct.2019.02.017
Weleda AG. AMARA‐TROPFEN. AMARA‐TROPFEN leaflet. Published 2013. Accessed September 21, 2023. https://www.weleda.de/restservices‐deu‐de/ppis/downloadPdf/322400_Leaflet
EMA. Taraxaci radix cum herba. European Medicines Agency. Published October 27, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/taraxaci‐radix‐cum‐herba
EMA. Gentianae radix. European Medicines Agency. Published November 18, 2021. Accessed November 20, 2023https://www.ema.europa.eu/en/medicines/herbal/gentianae‐radix
EMA. Cichorii intybi radix. European Medicines Agency. Published November 18, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/cichorii‐intybi‐radix
EMA. Millefolii herba. European Medicines Agency. Published November 24, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/millefolii‐herba
EMA. Absinthii herba. European Medicines Agency. Published October 14, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/absinthii‐herba
EMA. Juniperi galbulus (pseudo‐fructus). European Medicines Agency. Published November 24, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/juniperi‐pseudo‐fructus‐galbulus
EMA. Salviae officinalis folium. European Medicines Agency. Published October 20, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/salviae‐officinalis‐folium
EMA. Centaurii herba. European Medicines Agency. Published November 18, 2021. Accessed November 20, 2023. https://www.ema.europa.eu/en/medicines/herbal/centaurii‐herba
Petelka J, Plagg B, Säumel I, Zerbe S. Traditional medicinal plants in South Tyrol (northern Italy, southern Alps): biodiversity and use. J Ethnobiol Ethnomed. 2020;16(1):74. doi:10.1186/s13002-020-00419-8
Mahadeva S, Goh KL. Epidemiology of functional dyspepsia: a global perspective. World J Gastroenterol. 2006;12(17):2661‐2666. doi:10.3748/wjg.v12.i17.2661
Harer KN, Hasler WL. Functional dyspepsia: A review of the symptoms, evaluation, and treatment options. Gastroenterol Hepatol (N Y). 2020;16(2):66‐74.
Kindt S, Tack J. Impaired gastric accommodation and its role in dyspepsia. Gut. 2006;55(12):1685‐1691. doi:10.1136/gut.2005.085365
Talley NJ, Ford AC. Functional dyspepsia. N Engl J Med. 2015;373(19):1853‐1863. doi:10.1056/NEJMra1501505
Shrestha DB, Budhathoki P, Subedi P, et al. Acotiamide and Functional Dyspepsia: a systematic review and meta‐analysis. Cureus. 2021;13(12):e20532. doi:10.7759/cureus.20532
Simmen U, Kelber O, Okpanyi SN, Jaeggi R, Bueter B, Weiser D. Binding of STW 5 (Iberogast) and its components to intestinal 5‐HT, muscarinic M3, and opioid receptors. Phytomedicine. 2006;13(Suppl 5):51‐55. doi:10.1016/j.phymed.2006.03.012
Stanghellini V, De Ponti F, De Giorgio R, Barbara G, Tosetti C, Corinaldesi R. New developments in the treatment of functional dyspepsia. Drugs. 2003;63(9):869‐892. doi:10.2165/00003495-200363090-00003
Ueda M, Iwasaki E, Suzuki H. Profile of acotiamide in the treatment of functional dyspepsia. Clin Exp Gastroenterol. 2016;9:83‐88. doi:10.2147/CEG.S72172
Lahner E, Bellentani S, Bastiani RD, et al. A survey of pharmacological and nonpharmacological treatment of functional gastrointestinal disorders. United European Gastroenterol J. 2013;1(5):385‐393. doi:10.1177/2050640613499567
Ammon HPT, Kelber O, Okpanyi SN. Spasmolytic and tonic effect of Iberogast (STW 5) in intestinal smooth muscle. Phytomedicine. 2006;13(Suppl 5):67‐74. doi:10.1016/j.phymed.2006.08.004
Heinle H, Hagelauer D, Pascht U, Kelber O, Weiser D. Intestinal spasmolytic effects of STW 5 (Iberogast) and its components. Phytomedicine. 2006;13(Suppl 5):75‐79. doi:10.1016/j.phymed.2006.03.013
Hohenester B, Rühl A, Kelber O, Schemann M. The herbal preparation STW5 (lberogast) has potent and region‐specific effects on gastric motility. Neurogastroenterol Motil. 2004;16(6):765‐773. doi:10.1111/j.1365-2982.2004.00548.x
Melzer J, Iten F, Reichling J, Saller R. Iberis amara L. and Iberogast®– a systematic review concerning dyspepsia. Focus Altern Complement Ther. 2003;8(4):518. doi:10.1111/j.2042-7166.2003.tb04037.x
Rösch W, Liebregts T, Gundermann KJ, Vinson B, Holtmann G. Phytotherapy for functional dyspepsia: a review of the clinical evidence for the herbal preparation STW 5. Phytomedicine. 2006;13(Suppl 5):114‐121. doi:10.1016/j.phymed.2006.03.022
Schemann M, Michel K, Zeller F, Hohenester B, Rühl A. Region‐specific effects of STW 5 (Iberogast) and its components in gastric fundus, corpus and antrum. Phytomedicine. 2006;13(Suppl 5):90‐99. doi:10.1016/j.phymed.2006.03.020
Wegener T, Wagner H. The active components and the pharmacological multi‐target principle of STW 5 (Iberogast). Phytomedicine. 2006;13(Suppl 5):20‐35. doi:10.1016/j.phymed.2006.07.001
Schemann M, Landmann M, Kelber O, Ammar RM, Krueger D, Michel K. Effects of the herbal preparation STW 5‐II on in vitro muscle activity in the Guinea pig stomach. Neurogastroenterol Motil. 2021;33(2):e13984. doi:10.1111/nmo.13984
Cichorium/Taraxacum comp. Commission C Monograph. Anthroposophical Medicine. Society of Anthroposophical Doctors in Germany on Behalf of the Medical Section at the Goetheanum Dornach/Switzerland; 1999:370‐371.
Mitsuya M, Mase T, Tsuchiya Y, et al. J‐104129, a novel muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors. Bioorg Med Chem. 1999;7(11):2555‐2567. doi:10.1016/S0968-0896(99)00177-7
Mitsuya M, Ogino Y, Kawakami K, et al. Discovery of a muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors among 2‐[(1S,3S)‐3‐sulfonylaminocyclopentyl]phenylacetamide derivatives. Bioorg Med Chem. 2000;8(4):825‐832. doi:10.1016/s0968-0896(00)00008-0
Ito Y, Takagi K, Tomita T. Relaxant actions of isoprenaline on Guinea‐pig isolated tracheal smooth muscle. Br J Pharmacol. 1995;116(6):2738‐2742. doi:10.1111/j.1476-5381.1995.tb17235.x
Izzo AA, Mascolo N, Costa M, Capasso F. Effect of papaverine on synaptic transmission in the Guinea‐pig ileum. Br J Pharmacol. 1997;121(4):768‐772. doi:10.1038/sj.bjp.0701142
Gharzouli K, Holzer P. Inhibition of Guinea pig intestinal peristalsis by the flavonoids quercetin, naringenin, apigenin and genistein. Pharmacology. 2003;70(1):5‐14. doi:10.1159/000074237
Hu Y, Guan X, He Z, et al. Apigenin‐7‐O‐glucoside alleviates DSS‐induced colitis by improving intestinal barrier function and modulating gut microbiota. J Funct Foods. 2023;104:105499. doi:10.1016/j.jff.2023.105499
Benvenutti RC, Dalla Vecchia CA, Locateli G, et al. Gastroprotective activity of hydroalcoholic extract of the leaves of Urera baccifera in rodents. J Ethnopharmacol. 2020;250:112473. doi:10.1016/j.jep.2019.112473
Kolgazi M, Cilingir S, Yilmaz O, et al. Caffeic acid attenuates gastric mucosal damage induced by ethanol in rats via nitric oxide modulation. Chem Biol Interact. 2021;334:109351. doi:10.1016/j.cbi.2020.109351
Rollinger JM, Mocka P, Zidorn C, Ellmerer EP, Langer T, Stuppner H. Application of the in combo screening approach for the discovery of non‐alkaloid acetylcholinesterase inhibitors from Cichorium intybus. Curr Drug Discov Technol. 2005;2(3):185‐193. doi:10.2174/1570163054866855
Carlotto J, da Silva LM, Dartora N, et al. Identification of a dicaffeoylquinic acid isomer from Arctium lappa with a potent anti‐ulcer activity. Talanta. 2015;135:50‐57. doi:10.1016/j.talanta.2014.11.068
Niiho Y, Yamazaki T, Nakajima Y, et al. Gastroprotective effects of bitter principles isolated from gentian root and Swertia herb on experimentally‐induced gastric lesions in rats. J Nat Med. 2006;60(1):82‐88. doi:10.1007/s11418-005-0014-2
Mendel M, Skalicka‐Woźniak K, Chłopecka M, Dziekan N. Effect of imperatorin on the spontaneous motor activity of rat isolated jejunum strips. Evid Based Complement Alternat Med. 2015;2015:614849. doi:10.1155/2015/614849
Kim DK, Lim JP, Yang JH, Eom DO, Eun JS, Leem KH. Acetylcholinesterase inhibitors from the roots of Angelica dahurica. Arch Pharm Res. 2002;25(6):856‐859. doi:10.1007/BF02977004
Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine. 2016;23(10):1005‐1011. doi:10.1016/j.phymed.2016.06.014
Li E, Zheng H, Zhao X, Zheng G. Effect of Nepitrin against Castor oil induced diarrhea and gastrointestinal propulsion of charcoal meal in rats. Lat Am J Pharm. 2021;40(7):1451‐1457.
Li K, Wu J, Xu S, et al. Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota. Microbiology Spectrum. 2023;11(5):e0191423. doi:10.1128/spectrum.01914-23
Sakamoto S, Wada S, Tanaka H, Morimoto S. Sensitive quantitative analysis of the bitter glycoside amarogentin by specific monoclonal antibody‐based indirect competitive enzyme‐linked immunosorbent assay. RSC Adv. 2018;8(31):17410‐17416. doi:10.1039/C8RA02922A
Kimura Y, Sumiyoshi M. Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice. Fitoterapia. 2011;82(6):827‐833. doi:10.1016/j.fitote.2011.04.008
Boeing T, de Souza J, Vilhena da Silva RC, et al. Gastroprotective effect of Artemisia absinthium L.: A medicinal plant used in the treatment of digestive disorders. J Ethnopharmacol. 2023;312:116488. doi:10.1016/j.jep.2023.116488
Delazar A, Celik S, Göktürk RS, Unal O, Nahar L, Sarker SD. Two acylated flavonoid glycosides from Stachys bombycina, and their free radical scavenging activity. Pharmazie. 2005;60(11):878‐880.
Topal M, Gocer H, Topal F, et al. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem. 2016;31(2):266‐275. doi:10.3109/14756366.2015.1018244
Inatani R, Nakatani N, Fuwa H. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agric Biol Chem. 1983;47(3):521‐528. doi:10.1080/00021369.1983.10865682
Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J Tradit Complement Med. 2016;7(3):360‐366. doi:10.1016/j.jtcme.2016.11.003
Hwang D, Kang MJ, Kang CW, Kim GD. Kaempferol‐3‐O‐β‐rutinoside suppresses the inflammatory responses in lipopolysaccharide‐stimulated RAW264.7 cells via the NF‐κB and MAPK pathways. Int J Mol Med. 2019;44(6):2321‐2328. doi:10.3892/ijmm.2019.4381
Kure A, Nakagawa K, Kondo M, et al. Metabolic fate of luteolin in rats: its relationship to anti‐inflammatory effect. J Agric Food Chem. 2016;64(21):4246‐4254. doi:10.1021/acs.jafc.6b00964
Fan FY, Sang LX, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules. 2017;22(3):484. doi:10.3390/molecules22030484
Alcázar Magaña A, Kamimura N, Soumyanath A, Stevens JF, Maier CS. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021;107(5):1299‐1319. doi:10.1111/tpj.15390
Zwirchmayr J, Cruz CD, Grienke U, Tammela P, Rollinger JM. Biochemometry identifies ostruthin as pluripotent antimicrobial and anthelmintic agent from masterwort. iScience. 2023;26(9):107523. doi:10.1016/j.isci.2023.107523
Day AJ, Bao Y, Morgan MR, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic Biol Med. 2000;29(12):1234‐1243. doi:10.1016/s0891-5849(00)00416-0
Pérez‐Fons L, GarzÓn MT, Micol V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem. 2010;58(1):161‐171. doi:10.1021/jf9026487
Kim KA, Moon TC, Lee SW, Chung KC, Han BH, Chang HW. Pinusolide from the leaves of biota orientalis as potent platelet activating factor antagonist. Planta Med. 1999;65(1):39‐42. doi:10.1055/s-1999-13959
Hwang SL, Jeong YT, Hye Yang J, et al. Pinusolide improves high glucose‐induced insulin resistance via activation of AMP‐activated protein kinase. Biochem Biophys Res Commun. 2013;437(3):374‐379. doi:10.1016/j.bbrc.2013.06.084
Tanahashi Y, Komori S, Matsuyama H, Kitazawa T, Unno T. Functions of muscarinic receptor subtypes in gastrointestinal smooth muscle: A review of studies with receptor‐knockout mice. Int J Mol Sci. 2021;22(2):926. doi:10.3390/ijms22020926
Unno T, Matsuyama H, Sakamoto T, et al. M2 and M3 muscarinic receptor‐mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol. 2005;146(1):98‐108. doi:10.1038/sj.bjp.0706300
Iwanaga K, Murata T, Okada M, Hori M, Ozaki H. Carbachol induces Ca(2+)‐dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts. J Pharmacol Sci. 2009;110(3):306‐314. doi:10.1254/jphs.09118fp
Kaya B, Melhem H, Niess JH. GPR35 in intestinal diseases: from risk gene to function. Front Immunol. 2021;12:717392. doi:10.3389/fimmu.2021.717392
Zhang Q, Chen L, Yang H, et al. GPR84 signaling promotes intestinal mucosal inflammation via enhancing NLRP3 inflammasome activation in macrophages. Acta Pharmacol Sin. 2022;43(8):2042‐2054. doi:10.1038/s41401-021-00825-y
Ricci R, Bontempo I, Corazziari E, La Bella A, Torsoli A. Real time ultrasonography of the gastric antrum. Gut. 1993;34(2):173‐176. doi:10.1136/gut.34.2.173
Sasuga M, Yamamoto H, Abe S, Misumi M, Watanabe H, Hikawa Y. Gastric fluid volume and acidity 2 h after intake of clear fluids in patients undergoing upper GI, lower GI, and non‐GI surgery. Clinical Nutrition ESPEN. 2017;19:31‐34. doi:10.1016/j.clnesp.2017.01.013
Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med. 2017;7(4):433‐440. doi:10.1016/j.jtcme.2016.12.014
Bais S, Gill NS, Rana N, Shandil S. A phytopharmacological review on a medicinal plant: Juniperus communis. Int Sch Res Notices. 2014;2014:634723. doi:10.1155/2014/634723
Tavares WR, Seca AML. The current status of the pharmaceutical potential of Juniperus L. Metabolites. Medicines (Basel). 2018;5(3):81. doi:10.3390/medicines5030081
Vogl S, Zehl M, Picker P, et al. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC‐DAD and HPLC‐DAD‐MS. J Agric Food Chem. 2011;59(9):4371‐4377. doi:10.1021/jf104772x
Sarkhail P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. J Ethnopharmacol. 2014;156:235‐270. doi:10.1016/j.jep.2014.08.034