Duck circovirus regulates the expression of duck CLDN2 protein by activating the MAPK-ERK pathway to affect its adhesion and infection.
MAPK-ERK pathway
adhesion
claudin-2
duck circovirus
vertical transmission
Journal
Journal of virology
ISSN: 1098-5514
Titre abrégé: J Virol
Pays: United States
ID NLM: 0113724
Informations de publication
Date de publication:
30 Sep 2024
30 Sep 2024
Historique:
medline:
30
9
2024
pubmed:
30
9
2024
entrez:
30
9
2024
Statut:
aheadofprint
Résumé
Duck circovirus (DuCV) is widely recognized as a prominent virus in China's duck farming industry, known for its ability to cause persistent infections and significant immunosuppression, which can lead to an increased susceptibility to secondary infections, posing a significant threat to the duck industry. Moreover, clinical evidence also indicates the potential vertical transmission of the virus through duck embryos to subsequent generations of ducklings. However, the limited availability of suitable cell lines for Although duck circovirus (DuCV) poses a widespread infection and a serious hazard to the duck industry, the molecular mechanisms underlying DuCV infection and transmission remain elusive. We initially demonstrated vertical transmission of DuCV through female breeding ducks by simulating natural infection. Furthermore, a differentially expressed membrane protein CLDN2 was identified on the DuCV-infected oviduct of female ducks, and its extracellular loop structural domains EL1 and EL2 were identified as the interaction sites of DuCV Cap proteins. Moreover, the binding of DuCV Cap to CLDN2 triggered the intracellular MAPK-ERK pathway and activated the downstream transcription factor SP5. Importantly, we demonstrated that intracellular Cap also interacts with SP5, leading to upregulation of CLDN2 transcription and facilitating enhanced adherence of DuCV to target tissue, thereby promoting viral infection and transmission. Our study sheds light on the molecular mechanisms underlying vertical transmission of DuCV, highlighting CLDN2 as a promising target for drug development against DuCV infection.
Identifiants
pubmed: 39345142
doi: 10.1128/jvi.00497-24
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM