Biological function of sialic acid and sialylation in human health and disease.


Journal

Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035

Informations de publication

Date de publication:
30 Sep 2024
Historique:
received: 28 06 2024
accepted: 12 09 2024
revised: 08 09 2024
medline: 1 10 2024
pubmed: 1 10 2024
entrez: 30 9 2024
Statut: epublish

Résumé

Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.

Identifiants

pubmed: 39349440
doi: 10.1038/s41420-024-02180-3
pii: 10.1038/s41420-024-02180-3
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

415

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82370383
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82100273
Organisme : Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
ID : 2024A1515013289

Informations de copyright

© 2024. The Author(s).

Références

Sprenger N, Duncan PI. Sialic acid utilization. Adv Nutr. 2012;3:392S–7S.
pubmed: 22585917 pmcid: 3649475 doi: 10.3945/an.111.001479
Corfield AP, Wember M, Schauer R, Rott R. The specificity of viral sialidases. The use of oligosaccharide substrates to probe enzymic characteristics and strain-specific differences. Eur J Biochem. 1982;124:521–5.
pubmed: 7106104 doi: 10.1111/j.1432-1033.1982.tb06624.x
Blix G. Über die Kohlenhydratgruppen des Submaxillarismucins. Biol Chem. 1936;240:43–54.
Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev. 2002;102:439–69.
pubmed: 11841250 doi: 10.1021/cr000407m
Varki A. N-glycolylneuraminic acid deficiency in humans. Biochimie. 2001;83:615–22.
pubmed: 11522390 doi: 10.1016/S0300-9084(01)01309-8
Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci USA. 2003;100:12045–50.
pubmed: 14523234 pmcid: 218710 doi: 10.1073/pnas.2131556100
Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology. 2008;18:818–30.
pubmed: 18669916 pmcid: 2586336 doi: 10.1093/glycob/cwn072
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell. 2019;10:550–65.
pubmed: 30478534 doi: 10.1007/s13238-018-0597-5
Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol. 2010;5:163–76.
pubmed: 20020717 pmcid: 2825284 doi: 10.1021/cb900266r
Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446:1023–9.
pubmed: 17460663 doi: 10.1038/nature05816
Cohen M, Varki A. The sialome–far more than the sum of its parts. Omics. J Integr Biol. 2010;14:455–64.
Pshezhetsky AV, Hinek A. Where catabolism meets signalling: neuraminidase 1 as a modulator of cell receptors. Glycoconj J. 2011;28:441–52.
pubmed: 21928149 doi: 10.1007/s10719-011-9350-5
Ain KB, Mori Y, Refetoff S. Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevation of serum TBG concentration. J Clin Endocrinol Metab. 1987;65:689–96.
pubmed: 3116030 doi: 10.1210/jcem-65-4-689
Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32:1146–55.
pubmed: 15588939 doi: 10.1016/j.exphem.2004.08.004
Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, et al. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci USA. 1994;91:3670–4.
pubmed: 8170967 pmcid: 43643 doi: 10.1073/pnas.91.9.3670
Kimura R, Miller WM. Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog. 1997;13:311–7.
pubmed: 9190082 doi: 10.1021/bp9700162
Raju TS, Lang SE. Diversity in structure and functions of antibody sialylation in the Fc. Curr Opin Biotechnol. 2014;30:147–52.
pubmed: 25032906 doi: 10.1016/j.copbio.2014.06.014
Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14:351–60.
pubmed: 18606570 pmcid: 2553044 doi: 10.1016/j.molmed.2008.06.002
Born GV, Palinski W. Unusually high concentrations of sialic acids on the surface of vascular endothelia. Br J Exp Pathol. 1985;66:543–9.
pubmed: 4063159 pmcid: 2042046
Weber KS, Alon R, Klickstein LB. Sialylation of ICAM-2 on platelets impairs adhesion of leukocytes via LFA-1 and DC-SIGN. Inflammation. 2004;28:177–88.
pubmed: 15673159 doi: 10.1023/B:IFLA.0000049042.73926.eb
Zhuravleva MA, Trandem K, Sun PD. Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol. 2008;375:437–47.
pubmed: 18022638 doi: 10.1016/j.jmb.2007.10.009
Hiruma Y, Hirai T, Tsuda E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res Commun. 2011;409:424–9.
pubmed: 21586272 doi: 10.1016/j.bbrc.2011.05.015
Lühn K, Wild MK. Human deficiencies of fucosylation and sialylation affecting selectin ligands. Semin Immunopathol. 2012;34:383–99.
pubmed: 22461019 doi: 10.1007/s00281-012-0304-1
Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 2012;22:880–96.
pubmed: 22377912 doi: 10.1093/glycob/cws057
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Sialidase activity in human pathologies. Eur J Pharmacol. 2019;842:345–50.
pubmed: 30439363 doi: 10.1016/j.ejphar.2018.11.014
Bochner BS, Zimmermann N. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol. 2015;135:598–608.
pubmed: 25592986 pmcid: 4355302 doi: 10.1016/j.jaci.2014.11.031
Zhou X, Yang G, Guan F. Biological functions and analytical strategies of sialic acids in tumor. Cells. 2020;9:273.
pubmed: 31979120 pmcid: 7072699 doi: 10.3390/cells9020273
Yang K, Yang Z, Chen X, Li W. The significance of sialylation on the pathogenesis of Alzheimer’s disease. Brain Res Bull. 2021;173:116–23.
pubmed: 33991608 doi: 10.1016/j.brainresbull.2021.05.009
Stadlmann J, Pabst M, Altmann F. Analytical and functional aspects of antibody sialylation. J Clin Immunol. 2010;30:15–9.
pmcid: 2883086 doi: 10.1007/s10875-010-9409-2
Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrín D, Stehle T. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol. 2015;11:77–82.
pubmed: 25402769 doi: 10.1038/nchembio.1696
Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N. Y Acad Sci. 2012;1253:16–36.
pubmed: 22524423 pmcid: 3357316 doi: 10.1111/j.1749-6632.2012.06517.x
Ram S, Sharma AK, Simpson SD, Gulati S, McQuillen DP, Pangburn MK, et al. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med. 1998;187:743–52.
pubmed: 9480984 pmcid: 2212180 doi: 10.1084/jem.187.5.743
Johnston JW, Coussens NP, Allen S, Houtman JC, Turner KH, Zaleski A, et al. Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem. 2008;283:855–65.
pubmed: 17947229 doi: 10.1074/jbc.M706603200
Ram S, Lewis LA, Agarwal S. Meningococcal group W-135 and Y capsular polysaccharides paradoxically enhance activation of the alternative pathway of complement. J Biol Chem. 2011;286:8297–307.
pubmed: 21245150 pmcid: 3048715 doi: 10.1074/jbc.M110.184838
Nydegger UE, Fearon DT, Austen KF. Autosomal locus regulates inverse relationship between sialic acid content and capacity of mouse erythrocytes to activate human alternative complement pathway. Proc Natl Acad Sci USA. 1978;75:6078–82.
pubmed: 282625 pmcid: 393121 doi: 10.1073/pnas.75.12.6078
Shi WX, Chammas R, Varki NM, Powell L, Varki A. Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem. 1996;271:31526–32.
pubmed: 8940168 doi: 10.1074/jbc.271.49.31526
Kjaer TR, Hansen AG, Sørensen UB, Nielsen O, Thiel S, Jensenius JC. Investigations on the pattern recognition molecule M-ficolin: quantitative aspects of bacterial binding and leukocyte association. J Leukoc Biol. 2011;90:425–37.
pubmed: 21730084 doi: 10.1189/jlb.0411201
Honoré C, Rørvig S, Hummelshøj T, Skjoedt MO, Borregaard N, Garred P. Tethering of Ficolin-1 to cell surfaces through recognition of sialic acid by the fibrinogen-like domain. J Leukoc Biol. 2010;88:145–58.
pubmed: 20400674 doi: 10.1189/jlb.1209802
Gout E, Garlatti V, Smith DF, Lacroix M, Dumestre-Pérard C, Lunardi T, et al. Carbohydrate recognition properties of human ficolins: glycan array screening reveals the sialic acid binding specificity of M-ficolin. J Biol Chem. 2010;285:6612–22.
pubmed: 20032467 doi: 10.1074/jbc.M109.065854
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.
pubmed: 17380156 doi: 10.1038/nri2056
Pillai S, Netravali IA, Cariappa A, Mattoo H. Siglecs and immune regulation. Annu Rev Immunol. 2012;30:357–92.
pubmed: 22224769 pmcid: 3781015 doi: 10.1146/annurev-immunol-020711-075018
Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol. 2011;29:428–35.
pubmed: 21478876 pmcid: 4090080 doi: 10.1038/nbt.1846
Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med. 2015;7:303 ra140.
doi: 10.1126/scitranslmed.aab3459
Lünemann JD, von Gunten S, Neumann H. Targeting sialylation to treat central nervous system diseases. Trends Pharmacol Sci. 2021;42:998–1008.
pubmed: 34607695 doi: 10.1016/j.tips.2021.09.002
Toubai T, Hou G, Mathewson N, Liu C, Wang Y, Oravecz-Wilson K, et al. Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood. 2014;123:3512–23.
pubmed: 24695850 pmcid: 4041170 doi: 10.1182/blood-2013-12-545335
Lübbers J, Rodríguez E, van Kooyk Y. Modulation of immune tolerance via siglec-sialic acid interactions. Front Immunol. 2018;9:2807.
pubmed: 30581432 pmcid: 6293876 doi: 10.3389/fimmu.2018.02807
Angata T, Margulies EH, Green ED, Varki A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA. 2004;101:13251–6.
pubmed: 15331780 pmcid: 516556 doi: 10.1073/pnas.0404833101
Makarava N, Baskakov IV. Role of sialylation of N-linked glycans in prion pathogenesis. Cell Tissue Res. 2022;392:201–14.
pubmed: 35088180 pmcid: 9329487 doi: 10.1007/s00441-022-03584-2
Zhang Y, Ohkuri T, Wakita D, Narita Y, Chamoto K, Kitamura H, et al. Sialyl lewisx antigen-expressing human CD4+ T and CD8+ T cells as initial immune responders in memory phenotype subsets. J Leukoc Biol. 2008;84:730–5.
pubmed: 18523229 doi: 10.1189/jlb.0907599
Sperandio M. The expanding role of α2‐3 sialylation for leukocyte trafficking in vivo. Ann N. Y Acad Sci. 2012;1253:201–5.
pubmed: 22257379 doi: 10.1111/j.1749-6632.2011.06271.x
Sperandio M, Gleissner CA, Ley K. Glycosylation in immune cell trafficking. Immunol Rev. 2009;230:97–113.
pubmed: 19594631 pmcid: 2745114 doi: 10.1111/j.1600-065X.2009.00795.x
Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44:1524–34.
pubmed: 17045339 doi: 10.1016/j.molimm.2006.09.005
Raju TS, Briggs JB, Borge SM, Jones AJ. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology. 2000;10:477–86.
pubmed: 10764836 doi: 10.1093/glycob/10.5.477
Orczyk-Pawiłowicz M, Augustyniak D, Hirnle L, Kątnik-Prastowska I. Degree of sialylation and fucosylation of plasma and amniotic immunoglobulin G changes progressively during normal pregnancy. Prenat Diagn. 2012;32:432–9.
pubmed: 22495687 doi: 10.1002/pd.3832
Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320:373–6.
pubmed: 18420934 pmcid: 2409116 doi: 10.1126/science.1154315
Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol. 2010;30:S9–14.
pubmed: 20480216 doi: 10.1007/s10875-010-9405-6
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13:176–89.
pubmed: 23411799 doi: 10.1038/nri3401
Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol. 2010;6:425–34.
pubmed: 20441428 doi: 10.1586/eci.10.9
Wu RQ, Lao XM, Chen DP, Qin H, Mu M, Cao WJ, et al. Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma. Immunity. 2023;56:180–92.e11.
pubmed: 36563676 doi: 10.1016/j.immuni.2022.11.014
Balneger N, Cornelissen LAM, Wassink M, Moons SJ, Boltje TJ, Bar-Ephraim YE, et al. Sialic acid blockade in dendritic cells enhances CD8(+) T cell responses by facilitating high-avidity interactions. Cell Mol Life Sci. 2022;79:98.
pubmed: 35089436 pmcid: 8799591 doi: 10.1007/s00018-021-04027-x
Crespo HJ, Cabral MG, Teixeira AV, Lau JT, Trindade H, Videira PA. Effect of sialic acid loss on dendritic cell maturation. Immunology. 2009;128:e621–31.
pubmed: 19740323 pmcid: 2753891 doi: 10.1111/j.1365-2567.2009.03047.x
Silva M, Silva Z, Marques G, Ferro T, Gonçalves M, Monteiro M, et al. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget. 2016;7:41053–66.
pubmed: 27203391 pmcid: 5173042 doi: 10.18632/oncotarget.9419
Cabral MG, Silva Z, Ligeiro D, Seixas E, Crespo H, Carrascal MA, et al. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency. Immunology. 2013;138:235–45.
pubmed: 23113614 pmcid: 3573277 doi: 10.1111/imm.12025
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol. 2021;12:823637.
pubmed: 35222358 doi: 10.3389/fimmu.2021.823637
Nabatov AA, Raginov IS. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells. Infect Agents Cancer. 2015;10:49.
doi: 10.1186/s13027-015-0043-8
Wang YC, Peterson SE, Loring JF. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 2014;24:143–60.
pubmed: 24217768 doi: 10.1038/cr.2013.151
Melo-Braga MN, Schulz M, Liu Q, Swistowski A, Palmisano G, Engholm-Keller K, et al. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteom. 2014;13:311–28.
doi: 10.1074/mcp.M112.026898
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility. Biol Reprod. 2023;109:137–55.
pubmed: 37379321 doi: 10.1093/biolre/ioad067
Ghaderi D, Springer SA, Ma F, Cohen M, Secrest P, Taylor RE, et al. Sexual selection by female immunity against paternal antigens can fix loss of function alleles. Proc Natl Acad Sci USA. 2011;108:17743–8.
pubmed: 21987817 pmcid: 3203784 doi: 10.1073/pnas.1102302108
Janiszewska E, Kokot I, Kmieciak A, Stelmasiak Z, Gilowska I, Faundez R, et al. The association between clusterin sialylation degree and levels of oxidative–antioxidant balance markers in seminal plasmas and blood sera of male partners with abnormal sperm parameters. Int J Mol Sci. 2022;23:10598.
pubmed: 36142505 pmcid: 9501354 doi: 10.3390/ijms231810598
Bernal A, Torres J, Reyes A, Rosado A. Presence and regional distribution of sialyl transferase in the epididymis of the rat. Biol Reprod. 1980;23:290–3.
pubmed: 7417673 doi: 10.1095/biolreprod23.2.290
Feng Y, Wang L, Wu YL, Liu HH, Ma F. Roles of sialic acids in sperm maturation and capacitation and sperm-egg recognition. Zhonghua Nan Ke Xue. 2016;22:944–8.
pubmed: 29278479
Alkhodair K, Almhanna H, McGetrick J, Gedair S, Gallagher ME, Fernandez-Fuertes B, et al. Siglec expression on the surface of human, bull and ram sperm. Reproduction. 2018;155:361–71.
pubmed: 29581386 doi: 10.1530/REP-17-0475
Kambara Y, Shiba K, Yoshida M, Sato C, Kitajima K, Shingyoji C. Mechanism regulating Ca2+-dependent mechanosensory behaviour in sea urchin spermatozoa. Cell Struct Funct. 2011;36:69–82.
pubmed: 21358125 doi: 10.1247/csf.10020
Acott TS, Hoskins DD. Bovine sperm forward motility protein. Partial purification and characterization. J Biol Chem. 1978;253:6744–50.
pubmed: 211130 doi: 10.1016/S0021-9258(17)37981-4
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod update. 2023;29:126–54.
pubmed: 36130055 doi: 10.1093/humupd/dmac032
Tollner TL, Bevins CL, Cherr GN. Multifunctional glycoprotein DEFB126–a curious story of defensin-clad spermatozoa. Nat Rev Urol. 2012;9:365–75.
pubmed: 22710670 doi: 10.1038/nrurol.2012.109
Hänsch M, Simon P, Schön J, Kaese M, Braun BC, Jewgenow K, et al. Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. Glycobiology. 2014;24:488–93.
pubmed: 24663385 doi: 10.1093/glycob/cwu023
Kanato Y, Kitajima K, Sato C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology. 2008;18:1044–53.
pubmed: 18796648 doi: 10.1093/glycob/cwn084
Li C, Zhou X. The potential roles of neurotrophins in male reproduction. Reproduction. 2013;145:R89–95.
pubmed: 23404847 doi: 10.1530/REP-12-0466
Simon P, Feuerstacke C, Kaese M, Saboor F, Middendorff R, Galuska SP. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis. PloS ONE. 2015;10:e0123960.
pubmed: 25822229 pmcid: 4379024 doi: 10.1371/journal.pone.0123960
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, et al. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem. 2013;288:18825–33.
pubmed: 23671285 pmcid: 3696658 doi: 10.1074/jbc.M113.451112
Aakhus AM, Stavem P, Hovig T, Pedersen TM, Solum NO. Studies on a patient with thrombocytopenia, giant platelets and a platelet membrane glycoprotein Ib with reduced amount of sialic acid. Br J Haematol. 1990;74:320–9.
pubmed: 2334639 doi: 10.1111/j.1365-2141.1990.tb02590.x
Gröttum KA, Solum NO. Congenital thrombocytopenia with giant platelets: a defect in the platelet membrane. Br J Haematol. 1969;16:277–90.
pubmed: 4893927 doi: 10.1111/j.1365-2141.1969.tb00402.x
Kunishima S, Kamiya T, Saito H. Genetic abnormalities of Bernard-Soulier syndrome. Int J Hematol. 2002;76:319–27.
pubmed: 12463594 doi: 10.1007/BF02982690
Ward S, O’Sullivan JM, O’Donnell JS. von Willebrand factor sialylation-A critical regulator of biological function. J Thromb Haemost. 2019;17:1018–29.
pubmed: 31055873 doi: 10.1111/jth.14471
Federici AB, De Romeuf C, De Groot PG, Samor B, Lombardi R, D’Alessio P, et al. Adhesive properties of the carbohydrate-modified von Willebrand factor (CHO-vWF). Blood. 1988;71:947–52.
pubmed: 3128350 doi: 10.1182/blood.V71.4.947.947
Berkowitz SD, Federici AB. Sialic acid prevents loss of large von Willebrand factor multimers by protecting against amino-terminal proteolytic cleavage. Blood. 1988;72:1790–6.
pubmed: 2460162 doi: 10.1182/blood.V72.5.1790.1790
Vajaria BN, Patel KR, Begum R, Patel PS. Sialylation: an avenue to target cancer cells. Pathol Oncol Res. 2015;22:443–7.
pubmed: 26685886 doi: 10.1007/s12253-015-0033-6
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15:346–66.
pubmed: 30858582 pmcid: 6590709 doi: 10.1038/s41581-019-0129-4
Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer. 2020;124:76–90.
pubmed: 33144696 pmcid: 7782833 doi: 10.1038/s41416-020-01126-7
Shah MH, Telang SD, Shah PM, Patel PS. Tissue and serum alpha 2-3- and alpha 2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj J. 2008;25:279–90.
pubmed: 18158621 doi: 10.1007/s10719-007-9086-4
Cylwik B, Chrostek L, Szmitkowski M. Diagnostic value of total and lipid-bound sialic acid in malignancies. Pol Merkur Lekarski. 2005;19:237–41.
pubmed: 16245443
Bose KS, Gokhale PV, Dwivedi S, Singh M. Quantitative evaluation and correlation of serum glycoconjugates: protein bound hexoses, sialic acid and fucose in leukoplakia, oral sub mucous fibrosis and oral cancer. J Nat Sci Biol Med. 2013;4:122–5.
pubmed: 23633847 pmcid: 3633261 doi: 10.4103/0976-9668.107275
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J. 2018;35:139–60.
pubmed: 29680984 pmcid: 5916985 doi: 10.1007/s10719-018-9820-0
Huang J, Huang J, Zhang G. Insights into the role of sialylation in cancer metastasis, immunity, and therapeutic opportunity. Cancers. 2022;14:5840.
pubmed: 36497322 pmcid: 9737300 doi: 10.3390/cancers14235840
Britain CM, Bhalerao N, Silva AD, Chakraborty A, Buchsbaum DJ, Crowley MR, et al. Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. J Biol Chem. 2021;296:100034.
pubmed: 33148698 doi: 10.1074/jbc.RA120.014126
Rao TC, Ma VP, Blanchard A, Urner TM, Grandhi S, Salaita K, et al. EGFR activation attenuates the mechanical threshold for integrin tension and focal adhesion formation. J cell Sci. 2020;133:jcs238840.
pubmed: 32546532 pmcid: 7358133 doi: 10.1242/jcs.238840
Rao TC, Beggs RR, Ankenbauer KE, Hwang J, Ma VP, Salaita K, et al. ST6Gal-I-mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion. J Biol Chem. 2022;298:101726.
pubmed: 35157848 pmcid: 8956946 doi: 10.1016/j.jbc.2022.101726
Christie DR, Shaikh FM. Lucas JAt, Lucas JA, 3rd, Bellis SL. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res. 2008;1:3.
pubmed: 19014651 pmcid: 2584051 doi: 10.1186/1757-2215-1-3
Ou L, He X, Liu N, Song Y, Li J, Gao L, et al. Sialylation of FGFR1 by ST6Gal‑I overexpression contributes to ovarian cancer cell migration and chemoresistance. Mol Med Rep. 2020;21:1449–60.
pubmed: 32016470 pmcid: 7003046
Zhang X, Dou P, Akhtar ML, Liu F, Hu X, Yang L, et al. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene. 2021;40:5427–40.
pubmed: 34282273 doi: 10.1038/s41388-021-01955-7
Cazet A, Julien S, Bobowski M, Krzewinski-Recchi MA, Harduin-Lepers A, Groux-Degroote S, et al. Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res. 2010;345:1377–83.
pubmed: 20231016 doi: 10.1016/j.carres.2010.01.024
Ozaki H, Matsuzaki H, Ando H, Kaji H, Nakanishi H, Ikehara Y, et al. Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model. Clin Exp Metastasis. 2012;29:229–38.
pubmed: 22228572 pmcid: 3275730 doi: 10.1007/s10585-011-9445-1
Elkashef SM, Allison SJ, Sadiq M, Basheer HA, Ribeiro Morais G, Loadman PM, et al. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment. Sci Rep. 2016;6:33026.
pubmed: 27611649 pmcid: 5017143 doi: 10.1038/srep33026
Rosa P, Scibetta S, Pepe G, Mangino G, Capocci L, Moons SJ, et al. Polysialic acid sustains the hypoxia-induced migration and undifferentiated state of human glioblastoma cells. Int J Mol Sci. 2022;23:9563.
pubmed: 36076963 pmcid: 9455737 doi: 10.3390/ijms23179563
Ferrer CM, Reginato MJ. Sticking to sugars at the metastatic site: sialyltransferase ST6GalNAc2 acts as a breast cancer metastasis suppressor. Cancer Discov. 2014;4:275–7.
pubmed: 24596201 pmcid: 3964769 doi: 10.1158/2159-8290.CD-14-0075
Gu Y, Zhang J, Mi W, Yang J, Han F, Lu X, et al. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast cancer Res. 2008;10:R1. BCR
pubmed: 18171481 pmcid: 2374951 doi: 10.1186/bcr1841
Napoletano C, Steentoff C, Battisti F, Ye Z, Rahimi H, Zizzari IG, et al. Investigating patterns of immune interaction in ovarian cancer: probing the O-glycoproteome by the macrophage galactose-like C-type lectin (MGL). Cancers. 2020;12:2841.
pubmed: 33019700 pmcid: 7600217 doi: 10.3390/cancers12102841
Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci. 2020;77:593–605.
pubmed: 31485715 doi: 10.1007/s00018-019-03288-x
Kim C-H. CD33 and CD33-related siglecs in pathogen recognition and endocytosis of DC in the innate immune system. In: Kim C-H, editor. Glycobiology of innate immunology. Singapore: Springer Singapore; 2022. p. 631–56.
Hiltbold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol. 2000;165:3730–41.
pubmed: 11034378 doi: 10.4049/jimmunol.165.7.3730
Brunngraber EG, Witting LA, Haberland C, Brown B. Glycoproteins in Tay-sachs disease: isolation and carbohydrate composition of glycopeptides. Brain Res. 1972;38:151–62.
pubmed: 4259417 doi: 10.1016/0006-8993(72)90596-3
Angata K, Fukuda M. Roles of polysialic acid in migration and differentiation of neural stem cells. Methods Enzymol. 2010;479:25–36.
pubmed: 20816158 doi: 10.1016/S0076-6879(10)79002-9
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Front Cell Neurosci. 2020;14:162.
pubmed: 32581723 pmcid: 7296093 doi: 10.3389/fncel.2020.00162
Abe C, Yi Y, Hane M, Kitajima K, Sato C. Acute stress-induced change in polysialic acid levels mediated by sialidase in mouse brain. Sci Rep. 2019;9:9950.
pubmed: 31289315 pmcid: 6616613 doi: 10.1038/s41598-019-46240-6
Minami A, Saito M, Mamada S, Ieno D, Hikita T, Takahashi T, et al. Role of sialidase in long-term potentiation at mossy fiber-CA3 synapses and hippocampus-dependent spatial memory. PloS one. 2016;11:e0165257.
pubmed: 27783694 pmcid: 5081204 doi: 10.1371/journal.pone.0165257
Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimer’s Res Ther. 2021;13:40.
doi: 10.1186/s13195-020-00761-9
Nakagawa K, Kitazume S, Oka R, Maruyama K, Saido TC, Sato Y, et al. Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J Neurochem. 2006;96:924–33.
pubmed: 16412100 doi: 10.1111/j.1471-4159.2005.03595.x
Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron. 2020;108:801–21.
pubmed: 33096024 doi: 10.1016/j.neuron.2020.09.029
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, et al. Role of B cells in multiple sclerosis and related disorders. Ann Neurol. 2021;89:13–23.
pubmed: 33091175 doi: 10.1002/ana.25927
Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J Exp Med. 2010;207:173–87.
pubmed: 20038598 pmcid: 2812539 doi: 10.1084/jem.20091873
Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A, et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J Clin Investig. 2013;123:3074–83.
pubmed: 23722906 pmcid: 3706185 doi: 10.1172/JCI69187
McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG, et al. Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PloS one. 2012;7:e38172.
pubmed: 22693595 pmcid: 3364966 doi: 10.1371/journal.pone.0038172
El Maarouf A, Petridis AK, Rutishauser U. Use of polysialic acid in repair of the central nervous system. Proc Natl Acad Sci USA. 2006;103:16989–94.
pubmed: 17075041 pmcid: 1636566 doi: 10.1073/pnas.0608036103
Zhang Y, Zhang X, Yeh J, Richardson P, Bo X. Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J Neurosci. 2007;25:351–61.
pubmed: 17284175 doi: 10.1111/j.1460-9568.2007.05311.x
Zhang Y, Zhang X, Wu D, Verhaagen J, Richardson PM, Yeh J, et al. Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord. Mol Ther. 2007;15:1796–804.
pubmed: 17551503 doi: 10.1038/sj.mt.6300220
Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, Matsas R. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 2007;130:2159–74.
pubmed: 17626035 doi: 10.1093/brain/awm155
Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA. 2000;97:7585–90.
pubmed: 10840047 pmcid: 16589 doi: 10.1073/pnas.100076197
Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125:1972–9.
pubmed: 12183343 doi: 10.1093/brain/awf216
Franceschini I, Vitry S, Padilla F, Casanova P, Tham TN, Fukuda M, et al. Migrating and myelinating potential of neural precursors engineered to overexpress PSA-NCAM. Mol Cell Neurosci. 2004;27:151–62.
pubmed: 15485771 doi: 10.1016/j.mcn.2004.05.006
Mehanna A, Jakovcevski I, Acar A, Xiao M, Loers G, Rougon G, et al. Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice. Mol Ther. 2010;18:34–43.
pubmed: 19826404 doi: 10.1038/mt.2009.235
Saini V, Lutz D, Kataria H, Kaur G, Schachner M, Loers G. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair. Sci Rep. 2016;6:26927.
pubmed: 27324620 pmcid: 4914991 doi: 10.1038/srep26927
Bushman J, Mishra B, Ezra M, Gul S, Schulze C, Chaudhury S, et al. Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repair. Neuropharmacology. 2014;79:456–66.
pubmed: 24067923 doi: 10.1016/j.neuropharm.2013.09.014
Jungnickel J, Eckhardt M, Haastert-Talini K, Claus P, Bronzlik P, Lipokatic-Takacs E, et al. Polysialyltransferase overexpression in Schwann cells mediates different effects during peripheral nerve regeneration. Glycobiology. 2012;22:107–15.
pubmed: 21840969 doi: 10.1093/glycob/cwr113
Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, et al. Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain. 2009;132:1449–62.
pubmed: 19454531 doi: 10.1093/brain/awp128
Kalotra S, Saini V, Singh H, Sharma A, Kaur G. 5-Nonyloxytryptamine oxalate-embedded collagen-laminin scaffolds augment functional recovery after spinal cord injury in mice. Ann N Y Acad Sci. 2020;1465:99–116.
pubmed: 31800108 doi: 10.1111/nyas.14279
Baskakov IV, Katorcha E. Multifaceted role of sialylation in prion diseases. Front Neurosci. 2016;10:358.
pubmed: 27551257 pmcid: 4976111 doi: 10.3389/fnins.2016.00358
Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–44.
pubmed: 6801762 doi: 10.1126/science.6801762
Borchelt StahlN, Hsiao DR, Prusiner K. SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987;51:229–40.
pubmed: 2444340 doi: 10.1016/0092-8674(87)90150-4
Endo T, Groth D, Prusiner SB, Kobata A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry. 1989;28:8380–8.
pubmed: 2574992 doi: 10.1021/bi00447a017
Stimson E, Hope J, Chong A, Burlingame AL. Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry. 1999;38:4885–95.
pubmed: 10200178 doi: 10.1021/bi982330q
Bate C, Nolan W, Williams A. Sialic acid on the glycosylphosphatidylinositol anchor regulates PrP-mediated cell signaling and prion formation. J Biol Chem. 2016;291:160–70.
pubmed: 26553874 doi: 10.1074/jbc.M115.672394
Katorcha E, Makarava N, Savtchenko R, D’Azzo A, Baskakov IV. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog. 2014;10:e1004366.
pubmed: 25211026 pmcid: 4161476 doi: 10.1371/journal.ppat.1004366
Katorcha E, Srivastava S, Klimova N, Baskakov IV. Sialylation of glycosylphosphatidylinositol (GPI) anchors of mammalian prions is regulated in a host-, tissue-, and cell-specific manner. J Biol Chem. 2016;291:17009–19.
pubmed: 27317661 pmcid: 5016106 doi: 10.1074/jbc.M116.732040
Srivastava S, Katorcha E, Daus ML, Lasch P, Beekes M, Baskakov IV. Sialylation controls prion fate in vivo. J Biol Chem. 2017;292:2359–68.
pubmed: 27998976 doi: 10.1074/jbc.M116.768010
Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, et al. Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci USA. 2002;99:3563–8.
pubmed: 11891310 pmcid: 122563 doi: 10.1073/pnas.052703499
Govaerts C, Wille H, Prusiner SB, Cohen FE. Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci USA. 2004;101:8342–7.
pubmed: 15155909 pmcid: 420396 doi: 10.1073/pnas.0402254101
Requena JR, Wille H. The structure of the infectious prion protein: experimental data and molecular models. Prion. 2014;8:60–6.
pubmed: 24583975 pmcid: 7030906 doi: 10.4161/pri.28368
Katorcha E, Makarava N, Savtchenko R, Baskakov IV. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep. 2015;5:16912.
pubmed: 26576925 pmcid: 4649626 doi: 10.1038/srep16912
Bate C, Williams A. Clustering of sialylated glycosylphosphatidylinositol anchors mediates PrP-induced activation of cytoplasmic phospholipase A 2 and synapse damage. Prion. 2012;6:350–3.
pubmed: 22895089 pmcid: 3609062 doi: 10.4161/pri.21751
Bate C, Williams A. Neurodegeneration induced by clustering of sialylated glycosylphosphatidylinositols of prion proteins. J Biol Chem. 2012;287:7935–44.
pubmed: 22262833 pmcid: 3318732 doi: 10.1074/jbc.M111.275743
Solomon IH, Khatri N, Biasini E, Massignan T, Huettner JE, Harris DA. An N-terminal polybasic domain and cell surface localization are required for mutant prion protein toxicity. J Biol Chem. 2011;286:14724–36.
pubmed: 21385869 pmcid: 3077669 doi: 10.1074/jbc.M110.214973
Westergard L, Turnbaugh JA, Harris DA. A nine amino acid domain is essential for mutant prion protein toxicity. J Neurosci. 2011;31:14005–17.
pubmed: 21957261 pmcid: 3227396 doi: 10.1523/JNEUROSCI.1243-11.2011
Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science. 1999;284:1372–6.
pubmed: 10334995 doi: 10.1126/science.284.5418.1372
Guo S, Tian H, Dong R, Yang N, Zhang Y, Yao S, et al. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 2016;251:183–91.
pubmed: 27344369 doi: 10.1016/j.atherosclerosis.2016.05.032
Yu L, Peng J, Mineo C. Lipoprotein sialylation in atherosclerosis: lessons from mice. Front Endocrinol. 2022;13:953165.
doi: 10.3389/fendo.2022.953165
Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA. Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int J Mol Sci. 2014;15:12807–41.
pubmed: 25050779 pmcid: 4139876 doi: 10.3390/ijms150712807
Ruelland A, Gallou G, Legras B, Paillard F, Cloarec L. LDL sialic acid content in patients with coronary artery disease. Clin Chim Acta. 1993;221:127–33.
pubmed: 8149630 doi: 10.1016/0009-8981(93)90027-2
Tertov VV, Orekhov AN, Sobenin IA, Morrisett JD, Gotto AM Jr, Guevara JG Jr. Carbohydrate composition of protein and lipid components in sialic acid-rich and -poor low density lipoproteins from subjects with and without coronary artery disease. J Lipid Res. 1993;34:365–75.
pubmed: 8468522 doi: 10.1016/S0022-2275(20)40729-1
Orekhov AN, Tertov VV, Sobenin IA, Smirnov VN, Via DP, Guevara J Jr, et al. Sialic acid content of human low density lipoproteins affects their interaction with cell receptors and intracellular lipid accumulation. J lipid Res. 1992;33:805–17.
pubmed: 1512508 doi: 10.1016/S0022-2275(20)41506-8
Sukhorukov V, Gudelj I, Pučić-Baković M, Zakiev E, Orekhov A, Kontush A, et al. Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:643–53.
pubmed: 30641224 doi: 10.1016/j.bbalip.2019.01.005
Grewal T, Bartlett A, Burgess JW, Packer NH, Stanley KK. Desialylated LDL uptake in human and mouse macrophages can be mediated by a lectin receptor. Atherosclerosis. 1996;121:151–63.
pubmed: 8678920 doi: 10.1016/0021-9150(95)05715-3
Tertov VV, Sobenin IA, Gabbasov ZA, Popov EG, Jaakkola O, Solakivi T, et al. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization. Lab Investig. 1992;67:665–75.
pubmed: 1434544
Orekhov AN, Tertov VV, Kabakov AE, Adamova I, Pokrovsky SN, Smirnov VN. Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology. 1991;11:316–26. a journal of vascular biology
pubmed: 1998649 doi: 10.1161/01.ATV.11.2.316
Kacharava AG, Tertov VV, Orekhov AN. Autoantibodies against low-density lipoprotein and atherogenic potential of blood. Ann Med. 1993;25:551–5.
pubmed: 8292305 doi: 10.1080/07853890.1993.12088583
Tertov VV, Sobenin IA, Orekhov AN, Jaakkola O, Solakivi T, Nikkari T. Characteristics of low density lipoprotein isolated from circulating immune complexes. Atherosclerosis. 1996;122:191–9.
pubmed: 8769682 doi: 10.1016/0021-9150(95)05737-4
Fulop T Jr, Larbi A, Fortun A, Robert L, Khalil A. Elastin peptides induced oxidation of LDL by phagocytic cells. Pathol Biol. 2005;53:416–23.
pubmed: 16085119 doi: 10.1016/j.patbio.2004.12.023
Robert L, Jacob MP, Frances C, Godeau G, Hornebeck W. Interaction between elastin and elastases and its role in the aging of the arterial wall, skin and other connective tissues. A review. Mech Ageing Dev. 1984;28:155–66.
pubmed: 6394911 doi: 10.1016/0047-6374(84)90015-0
Mochizuki S, Brassart B, Hinek A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem. 2002;277:44854–63.
pubmed: 12244048 doi: 10.1074/jbc.M205630200
Milner CarrilloMB, Ball CM, Snoek ST, Campbell M. RD. Cloning and characterization of a sialidase from the murine histocompatibility-2 complex: low levels of mRNA and a single amino acid mutation are responsible for reduced sialidase activity in mice carrying the Neu1a allele. Glycobiology. 1997;7:975–86.
pubmed: 9363440 doi: 10.1093/glycob/7.7.975
Heimerl M, Sieve I, Ricke-Hoch M, Erschow S, Battmer K, Scherr M, et al. Neuraminidase-1 promotes heart failure after ischemia/reperfusion injury by affecting cardiomyocytes and invading monocytes/macrophages. Basic Res Cardiol. 2020;115:62.
pubmed: 32975669 pmcid: 7519006 doi: 10.1007/s00395-020-00821-z
Demina EP, Smutova V, Pan X, Fougerat A, Guo T, Zou C, et al. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J Am Heart Assoc. 2021;10:e018756.
pubmed: 33554615 pmcid: 7955353 doi: 10.1161/JAHA.120.018756
Hanson VA, Shettigar UR, Loungani RR, Nadijcka MD. Plasma sialidase activity in acute myocardial infarction. Am Heart J. 1987;114:59–63.
pubmed: 3604873 doi: 10.1016/0002-8703(87)90307-3
Gracheva EV, Samovilova NN, Golovanova NK, Il’inskaya OP, Tararak EM, Malyshev PP, et al. Sialyltransferase activity of human plasma and aortic intima is enhanced in atherosclerosis. Biochim Biophys Acta. 2002;1586:123–8.
pubmed: 11781157 doi: 10.1016/S0925-4439(01)00093-X
Döring Y, Noels H, Mandl M, Kramp B, Neideck C, Lievens D, et al. Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: short communication. Circ Res. 2014;114:976–81.
pubmed: 24425712 pmcid: 4353583 doi: 10.1161/CIRCRESAHA.114.302426
Saade S, Cazier JB, Ghassibe-Sabbagh M, Youhanna S, Badro DA, Kamatani Y, et al. Large scale association analysis identifies three susceptibility loci for coronary artery disease. PloS ONE. 2011;6:e29427.
pubmed: 22216278 pmcid: 3246490 doi: 10.1371/journal.pone.0029427
Zhang J, Liu Y, Deng X, Chen L, Yang X, Yu C. ST6GAL1 negatively regulates monocyte transendothelial migration and atherosclerosis development. Biochem Biophys Res Commun. 2018;500:249–55.
pubmed: 29654763 doi: 10.1016/j.bbrc.2018.04.053
Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol. 2006;355:1143–55.
pubmed: 16343533 doi: 10.1016/j.jmb.2005.11.002
Steele H, Tague AJ, Skropeta D. The role of sialylation in respiratory viral infection and treatment. Curr Med Chem. 2021;28:5251–67.
pubmed: 33593248 doi: 10.2174/0929867328666210201153901
Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM, Skehel JJ, et al. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989;28:8388–96.
pubmed: 2605190 doi: 10.1021/bi00447a018
Neu U, Bauer J, Stehle T. Viruses and sialic acids: rules of engagement. Curr Opin Struct Biol. 2011;21:610–8.
pubmed: 21917445 pmcid: 3189341 doi: 10.1016/j.sbi.2011.08.009
Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.
pubmed: 20538598 pmcid: 2937864 doi: 10.1074/jbc.R110.129809
Wagner R, Matrosovich M, Klenk HD. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 2002;12:159–66.
pubmed: 11987141 doi: 10.1002/rmv.352
Baum LG, Paulson JC. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology. 1991;180:10–5.
pubmed: 1984642 doi: 10.1016/0042-6822(91)90003-T
Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc Natl Acad Sci USA. 2008;105:9065–9.
pubmed: 18550812 pmcid: 2449365 doi: 10.1073/pnas.0800502105
Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y, et al. Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia. Biol psychiatry. 2006;59:652–9.
pubmed: 16229822 doi: 10.1016/j.biopsych.2005.08.016
Isomura R, Kitajima K, Sato C. Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem. 2011;286:21535–45.
pubmed: 21464126 pmcid: 3122212 doi: 10.1074/jbc.M111.221143
Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19:4072–82.
pubmed: 20663923 pmcid: 2947401 doi: 10.1093/hmg/ddq307
Kamien B, Harraway J, Lundie B, Smallhorne L, Gibbs V, Heath A, et al. Characterization of a 520 kb deletion on chromosome 15q26.1 including ST8SIA2 in a patient with behavioral disturbance, autism spectrum disorder, and epilepsy: additional information. Am J Med Genet Part A. 2015;167:1424.
pubmed: 25846131 doi: 10.1002/ajmg.a.36846
Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA. 1995;92:2785–9.
pubmed: 7708724 pmcid: 42303 doi: 10.1073/pnas.92.7.2785
Gilabert-Juan J, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Nácher J. Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci Lett. 2012;530:97–102.
pubmed: 23022470 doi: 10.1016/j.neulet.2012.09.032
Varea E, Guirado R, Gilabert-Juan J, Martí U, Castillo-Gomez E, Blasco-Ibáñez JM, et al. Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res. 2012;46:189–97.
pubmed: 22099865 doi: 10.1016/j.jpsychires.2011.10.011
Kröcher T, Malinovskaja K, Jürgenson M, Aonurm-Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71–83.
pubmed: 24057454 doi: 10.1007/s00429-013-0638-z
Bowles WHD, Gloster TM. Sialidase and sialyltransferase inhibitors: targeting pathogenicity and disease. Front Mol Biosci. 2021;8:705133.
pubmed: 34395532 pmcid: 8358268 doi: 10.3389/fmolb.2021.705133
Wang L, Liu Y, Wu L, Sun XL. Sialyltransferase inhibition and recent advances. Biochim Biophys Acta. 2016;1864:143–53.
pubmed: 26192491 doi: 10.1016/j.bbapap.2015.07.007
Moons SJ, Rossing E, Janssen M, Heise T, Büll C, Adema GJ, et al. Structure-activity relationship of metabolic sialic acid inhibitors and labeling reagents. ACS Chem Biol. 2022;17:590–7.
pubmed: 35179348 pmcid: 8938927 doi: 10.1021/acschembio.1c00868
Büll C, Boltje TJ, Wassink M, de Graaf AM, van Delft FL, den Brok MH, et al. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther. 2013;12:1935–46.
pubmed: 23974695 doi: 10.1158/1535-7163.MCT-13-0279
Büll C, Boltje TJ, van Dinther EA, Peters T, de Graaf AM, Leusen JH, et al. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano. 2015;9:733–45.
pubmed: 25575241 doi: 10.1021/nn5061964
Büll C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, et al. Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res. 2018;78:3574–88.
pubmed: 29703719 doi: 10.1158/0008-5472.CAN-17-3376
Heise T, Pijnenborg JFA, Büll C, van Hilten N, Kers-Rebel ED, Balneger N, et al. Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids. J Med Chem. 2019;62:1014–21.
pubmed: 30543426 doi: 10.1021/acs.jmedchem.8b01757
Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N, Marcondes MC, et al. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J Biol Chem. 2014;289:35149–58.
pubmed: 25368325 pmcid: 4271204 doi: 10.1074/jbc.M114.606517
Hsu CC, Lin TW, Chang WW, Wu CY, Lo WH, Wang PH, et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol Oncol. 2005;96:415–22.
pubmed: 15661230 doi: 10.1016/j.ygyno.2004.10.010
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, et al. Attenuation of polysialic acid biosynthesis in cells by the small molecule inhibitor 8-keto-sialic acid. ACS Chem Biol. 2023;18:41–8.
pubmed: 36577399 doi: 10.1021/acschembio.2c00638
Ahuja S, Cahill J, Hartfield K, Whorton MR. Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP. PloS ONE. 2021;16:e0249905.
pubmed: 34081697 pmcid: 8174729 doi: 10.1371/journal.pone.0249905
Muz B, Abdelghafer A, Markovic M, Yavner J, Melam A, Salama NN, et al. Targeting E-selectin to tackle cancer using uproleselan. Cancers. 2021;13:335.
pubmed: 33477563 pmcid: 7831123 doi: 10.3390/cancers13020335
Ho CH, Chen ML, Huang HL, Lai CJ, Liu CH, Chuu CP, et al. Active targeting of P-selectin by fucoidan modulates the molecular profiling of metastasis in docetaxel-resistant prostate cancer. Mar drugs. 2022;20:542.
pubmed: 36135731 pmcid: 9500773 doi: 10.3390/md20090542
Cai Z, Yan Y, Zhou J, Yang Y, Zhang Y, Chen J. Multifunctionalized brush-like glycopolymers with high affinity to p-selectin and antitumor metastasis activity. Biomacromolecules. 2021;22:1177–85.
pubmed: 33586430 doi: 10.1021/acs.biomac.0c01689
Manni M, Läubli H. Targeting glyco-immune checkpoints for cancer therapy. Expert Opin Biol Ther. 2021;21:1063–71.
pubmed: 33502268 doi: 10.1080/14712598.2021.1882989
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the sweet spot: glyco-immune checkpoints and γδ T cells in targeted immunotherapy. Front Immunol. 2020;11:564499.
pubmed: 33133075 pmcid: 7550643 doi: 10.3389/fimmu.2020.564499
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, et al. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol. 2020;16:1376–84.
pubmed: 32807964 pmcid: 7727925 doi: 10.1038/s41589-020-0622-x
Bärenwaldt A, Läubli H. The sialoglycan-Siglec glyco-immune checkpoint—a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets. 2019;23:839–53.
pubmed: 31524529 doi: 10.1080/14728222.2019.1667977
Ibarlucea-Benitez I, Weitzenfeld P, Smith P, Ravetch JV. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proc Natl Acad Sci USA. 2021;118:e2107424118.
pubmed: 34155121 pmcid: 8256000 doi: 10.1073/pnas.2107424118
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, et al. Siglec-9 regulates an effector memory CD8(+) T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res. 2019;7:707–18.
pubmed: 30988027 doi: 10.1158/2326-6066.CIR-18-0505
Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, et al. Development of Siglec-9 blocking antibody to enhance anti-tumor immunity. Front Oncol. 2021;11:778989.
pubmed: 34869028 pmcid: 8640189 doi: 10.3389/fonc.2021.778989
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019;25:656–66.
pubmed: 30833750 pmcid: 7175920 doi: 10.1038/s41591-019-0374-x
He F, Wang N, Li J, He L, Yang Z, Lu J, et al. High affinity monoclonal antibody targeting Siglec-15 for cancer immunotherapy. J Clin Transl Res. 2021;7:739–49.
pubmed: 34988324 pmcid: 8710358
Zhou ZR, Wang XY, Jiang L, Li DW, Qian RC. Sialidase-conjugated “NanoNiche” for efficient immune checkpoint blockade therapy. ACS Appl bio Mater. 2021;4:5735–41.
pubmed: 35006749 doi: 10.1021/acsabm.1c00507
Sharma M, Lathers D, Johnson M, Luke J, Puzanov I, Curti B, et al. 772 A phase 1/2 dose escalation/expansion study evaluating the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of E-602, a bi-sialidase fusion protein, in advanced cancer (GLIMMER-01). J Immunother Cancer. 2022;10. https://doi.org/10.1136/jitc-2022-SITC2022.0772 .
Yu S, Wang Q, Zhang J, Wu Q, Guo Z. Synthesis and evaluation of protein conjugates of GM3 derivatives carrying modified sialic acids as highly immunogenic cancer vaccine candidates. MedChemComm. 2011;2:524–30.
pubmed: 21927709 doi: 10.1039/c1md00033k
Wu J, Guo Z. Improving the antigenicity of sTn antigen by modification of its sialic acid residue for development of glycoconjugate cancer vaccines. Bioconjug Chem. 2006;17:1537–44.
pubmed: 17105234 pmcid: 2532825 doi: 10.1021/bc060103s
Miles D, Papazisis K. Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin Breast Cancer. 2003;3:S134–8.
pubmed: 12620150 doi: 10.3816/CBC.2003.s.002
O’Cearbhaill RE, Ragupathi G, Zhu J, Wan Q, Mironov S, Yang G, et al. A phase I study of unimolecular pentavalent (Globo-H-GM2-sTn-TF-Tn) immunization of patients with epithelial ovarian, fallopian tube, or peritoneal cancer in first remission. Cancers. 2016;8:46.
pubmed: 27110823 pmcid: 4846855 doi: 10.3390/cancers8040046
Sabbatini PJ, Ragupathi G, Hood C, Aghajanian CA, Juretzka M, Iasonos A, et al. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin Cancer Res. 2007;13:4170–7.
pubmed: 17634545 doi: 10.1158/1078-0432.CCR-06-2949
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.
pubmed: 33144066 doi: 10.1016/j.expneurol.2020.113518
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16:142.
pubmed: 31291966 pmcid: 6617684 doi: 10.1186/s12974-019-1516-2
Amani H, Habibey R, Shokri F, Hajmiresmail SJ, Akhavan O, Mashaghi A, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9:6044.
pubmed: 30988361 pmcid: 6465364 doi: 10.1038/s41598-019-42633-9
Xue Y, Dongmei L, Yige Z, Hang G, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artif Cells Nanomed Biotechnol. 2019;47:2492–9.
pubmed: 31208217 doi: 10.1080/21691401.2019.1623228
Wielgat P, Niemirowicz-Laskowska K, Wilczewska AZ, Car H. Sialic acid-modified nanoparticles-new approaches in the glioma management-perspective review. Int J Mol Sci. 2021;22:7494.
pubmed: 34299113 pmcid: 8304714 doi: 10.3390/ijms22147494
Kuo YC, Wang LJ, Rajesh R. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater Sci Eng C Mater Biol Appl. 2019;102:362–72.
pubmed: 31147008 doi: 10.1016/j.msec.2019.04.065
Su Y, Guo C, Chen Q, Guo H, Wang J, Kaihang M, et al. Novel multifunctional bionanoparticles modified with sialic acid for stroke treatment. Int J Biol Macromol. 2022;214:278–89.
pubmed: 35716787 doi: 10.1016/j.ijbiomac.2022.06.102
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res J Lab Clin Med. 2020;220:33–42.
Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, et al. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem. 2010;53:4441–9.
pubmed: 20476787 doi: 10.1021/jm1002183
Gambaryan AS, Tuzikov AB, Chinarev AA, Juneja LR, Bovin NV, Matrosovich MN. Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antivir Res. 2002;55:201–5.
pubmed: 12076764 doi: 10.1016/S0166-3542(02)00020-7
Hendricks GL, Weirich KL, Viswanathan K, Li J, Shriver ZH, Ashour J, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem. 2013;288:8061–73.
pubmed: 23362274 pmcid: 3605625 doi: 10.1074/jbc.M112.437202
Russell RJ, Stevens DJ, Haire LF, Gamblin SJ, Skehel JJ. Avian and human receptor binding by hemagglutinins of influenza A viruses. Glycoconj J. 2006;23:85–92.
pubmed: 16575525 doi: 10.1007/s10719-006-5440-1
Koszalka P, Tilmanis D, Hurt AC. Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir. Viruses. 2017;11:240–6.
pubmed: 28146320 pmcid: 5410715 doi: 10.1111/irv.12446
Malakhov MP, Aschenbrenner LM, Smee DF, Wandersee MK, Sidwell RW, Gubareva LV, et al. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother. 2006;50:1470–9.
pubmed: 16569867 pmcid: 1426979 doi: 10.1128/AAC.50.4.1470-1479.2006
Zenilman JM, Fuchs EJ, Hendrix CW, Radebaugh C, Jurao R, Nayak SU, et al. Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults. Antivir Res. 2015;123:114–9.
pubmed: 26391974 doi: 10.1016/j.antiviral.2015.09.008
Mascarenhas JX, Korokhov N, Burger L, Kassim A, Tuter J, Miller D, et al. Genetic engineering of CHO cells for viral resistance to minute virus of mice. Biotechnol Bioeng. 2017;114:576–88.
pubmed: 27642072 doi: 10.1002/bit.26186
Wu D, Huang W, Wang Y, Guan W, Li R, Yang Z, et al. Gene silencing of β-galactosamide α-2,6-sialyltransferase 1 inhibits human influenza virus infection of airway epithelial cells. BMC Microbiol. 2014;14:78.
pubmed: 24670114 pmcid: 3986885 doi: 10.1186/1471-2180-14-78
Szabo R, Skropeta D. Advancement of sialyltransferase inhibitors: therapeutic challenges and opportunities. Med Res Rev. 2017;37:219–70.
pubmed: 27678392 doi: 10.1002/med.21407
Glaser L, Conenello G, Paulson J, Palese P. Effective replication of human influenza viruses in mice lacking a major alpha2,6 sialyltransferase. Virus Res. 2007;126:9–18.
pubmed: 17313986 doi: 10.1016/j.virusres.2007.01.011
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.
pubmed: 32171740 pmcid: 7118659 doi: 10.1016/j.ijantimicag.2020.105938
Varki A. Sialic acids as ligands in recognition phenomena. FASEB J. 1997;11:248–55.
pubmed: 9068613 doi: 10.1096/fasebj.11.4.9068613
Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55:105960.
pubmed: 32251731 pmcid: 7128678 doi: 10.1016/j.ijantimicag.2020.105960
Linnartz B, Wang Y, Neumann H. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimer’s Dis. 2010;2010:587463.
Wang Y, Neumann H. Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci. 2010;30:3482–8.
pubmed: 20203208 pmcid: 6634112 doi: 10.1523/JNEUROSCI.3940-09.2010
Shahraz A, Kopatz J, Mathy R, Kappler J, Winter D, Kapoor S, et al. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Sci Rep. 2015;5:16800.
pubmed: 26582367 pmcid: 4652165 doi: 10.1038/srep16800
Bondioli L, Ruozi B, Belletti D, Forni F, Vandelli MA, Tosi G. Sialic acid as a potential approach for the protection and targeting of nanocarriers. Expert Opin Drug Deliv. 2011;8:921–37.
pubmed: 21510826 doi: 10.1517/17425247.2011.577061
Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA. 1988;85:6949–53.
pubmed: 3413128 pmcid: 282096 doi: 10.1073/pnas.85.18.6949
Liu D, Mori A, Huang L. Large liposomes containing ganglioside GM1 accumulate effectively in spleen. Biochim Biophys Acta. 1991;1066:159–65.
pubmed: 1854781 doi: 10.1016/0005-2736(91)90182-8
Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta. 1992;1104:95–101.
pubmed: 1550858 doi: 10.1016/0005-2736(92)90136-A
Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 2004;11:123–8.
pubmed: 15200011 doi: 10.1080/10717540490280769

Auteurs

Wengen Zhu (W)

Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Yue Zhou (Y)

Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Linjuan Guo (L)

Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China. 727456372@qq.com.

Shenghui Feng (S)

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. shenghuifeng0429@163.com.

Classifications MeSH