Dynamical structure-function correlations provide robust and generalizable signatures of consciousness in humans.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
30 Sep 2024
30 Sep 2024
Historique:
received:
19
12
2023
accepted:
06
09
2024
medline:
1
10
2024
pubmed:
1
10
2024
entrez:
30
9
2024
Statut:
epublish
Résumé
Resting-state functional magnetic resonance imaging evolves through a repertoire of functional connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious awareness. We investigated whether the dynamic exploration of these states can provide robust and generalizable markers for the state of consciousness in human participants, across loss of consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to transition to other patterns. Our results provide evidence supporting the pronounced differences between conscious and unconscious brain states in terms of whole-brain dynamics; in particular, the maintenance of rich brain dynamics measured by entropy is a critical aspect of conscious awareness. Collectively, our results may have significant implications for our understanding of consciousness and the neural basis of human awareness, as well as for the discovery of robust signatures of consciousness that are generalizable among different brain conditions.
Identifiants
pubmed: 39349600
doi: 10.1038/s42003-024-06858-3
pii: 10.1038/s42003-024-06858-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1224Informations de copyright
© 2024. The Author(s).
Références
Sarasso, S. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).
pubmed: 26752078
doi: 10.1016/j.cub.2015.10.014
Demertzi, A. et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 5, eaat7603 (2019).
pubmed: 30775433
pmcid: 6365115
doi: 10.1126/sciadv.aat7603
Rankaduwa, S. & Owen, A. M. Psychedelics, entropic brain theory, and the taxonomy of conscious states: a summary of debates and perspectives. Neurosci. Conscious 2023, niad001 (2023).
pubmed: 37025356
pmcid: 10072236
doi: 10.1093/nc/niad001
Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5, 198ra105 (2013).
pubmed: 23946194
doi: 10.1126/scitranslmed.3006294
Dehaene, S. & Changeux, J.-P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).
pubmed: 21521609
doi: 10.1016/j.neuron.2011.03.018
Casarotto, S. et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 80, 718–729 (2016).
pubmed: 27717082
pmcid: 5132045
doi: 10.1002/ana.24779
Bodart, O. et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. Neuroimage Clin. 14, 354–362 (2017).
pubmed: 28239544
pmcid: 5318348
doi: 10.1016/j.nicl.2017.02.002
Gosseries, O. et al. Assessing consciousness in coma and related states using transcranial magnetic stimulation combined with electroencephalography. Ann. Fr. Anesth. Reanim. 33, 65–71 (2014).
pubmed: 24393302
doi: 10.1016/j.annfar.2013.11.002
Zilio, F. et al. Altered brain dynamics index levels of arousal in complete locked-in syndrome. Commun. Biol. 6, 757 (2023).
pubmed: 37474587
pmcid: 10359418
doi: 10.1038/s42003-023-05109-1
Biswal, B. B. Resting state fMRI: a personal history. Neuroimage 62, 938–944 (2012).
pubmed: 22326802
doi: 10.1016/j.neuroimage.2012.01.090
Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).
pubmed: 8524021
doi: 10.1002/mrm.1910340409
Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).
pubmed: 23146964
doi: 10.1093/cercor/bhs352
Cabral, J. et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 5135 (2017).
pubmed: 28698644
pmcid: 5506029
doi: 10.1038/s41598-017-05425-7
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).
pubmed: 32444827
pmcid: 7244753
doi: 10.1038/s42003-020-0961-x
Deco, G., Jirsa, V. K. & McIntosh, A. R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268–274 (2013).
pubmed: 23561718
doi: 10.1016/j.tins.2013.03.001
Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).
pubmed: 27693256
pmcid: 5073034
doi: 10.1016/j.neuron.2016.09.018
Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).
pubmed: 32043043
pmcid: 7006871
doi: 10.1162/netn_a_00116
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).
pubmed: 16788060
pmcid: 1480402
doi: 10.1073/pnas.0604187103
Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).
pubmed: 16899645
doi: 10.1152/jn.00048.2006
Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).
pubmed: 16945915
pmcid: 1564249
doi: 10.1073/pnas.0601417103
De Luca, M., Smith, S., De Stefano, N., Federico, A. & Matthews, P. M. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp. Brain Res. 167, 587–594 (2005).
pubmed: 16284751
doi: 10.1007/s00221-005-0059-1
Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).
pubmed: 11209064
pmcid: 14647
doi: 10.1073/pnas.98.2.676
Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).
pubmed: 25374354
pmcid: 4372723
doi: 10.1016/j.neuron.2014.10.015
Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54 (2017).
pubmed: 28034766
doi: 10.1016/j.neuroimage.2016.12.061
Baker, A. P. et al. Fast transient networks in spontaneous human brain activity. Elife 3, e01867 (2014).
pubmed: 24668169
pmcid: 3965210
doi: 10.7554/eLife.01867
Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).
pubmed: 21170073
doi: 10.1038/nrn2961
Luppi, A. I. et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat. Commun. 10, 4616 (2019).
pubmed: 31601811
pmcid: 6787094
doi: 10.1038/s41467-019-12658-9
Luppi, A. I. et al. LSD alters dynamic integration and segregation in the human brain. Neuroimage 227, 117653 (2021).
pubmed: 33338615
doi: 10.1016/j.neuroimage.2020.117653
Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).
pubmed: 25561541
pmcid: 4311826
doi: 10.1073/pnas.1418031112
Huang, Z., Zhang, J., Wu, J., Mashour, G. A. & Hudetz, A. G. Temporal circuit of macroscale dynamic brain activity supports human consciousness. Sci. Adv. 6, eaaz0087 (2020).
pubmed: 32195349
pmcid: 7065875
doi: 10.1126/sciadv.aaz0087
Hudetz, A. G., Liu, X. & Pillay, S. Dynamic repertoire of intrinsic brain states is reduced in propofol-induced unconsciousness. Brain Connect. 5, 10–22 (2015).
pubmed: 24702200
pmcid: 4313411
doi: 10.1089/brain.2014.0230
Mortaheb, S. et al. Mind blanking is a distinct mental state linked to a recurrent brain profile of globally positive connectivity during ongoing mentation. Proc. Natl Acad. Sci. USA 119, e2200511119 (2022).
pubmed: 36194631
pmcid: 9564098
doi: 10.1073/pnas.2200511119
Mortaheb, S. et al. Dynamic functional hyperconnectivity after psilocybin intake is primarily associated with oceanic boundlessness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging https://doi.org/10.1016/j.bpsc.2024.04.001 (2024).
Uhrig, L. et al. Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129, 942–958 (2018).
pubmed: 30028727
doi: 10.1097/ALN.0000000000002336
Luppi, A. I. et al. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum. Brain Mapp. 42, 2802–2822 (2021).
pubmed: 33738899
pmcid: 8127159
doi: 10.1002/hbm.25405
Sarasso, S. et al. Consciousness and complexity: a consilience of evidence. Neurosci. Conscious. https://doi.org/10.1093/nc/niab023 (2021).
Bai, Y., Lin, Y. & Ziemann, U. Managing disorders of consciousness: the role of electroencephalography. J. Neurol. 268, 4033–4065 (2021).
pubmed: 32915309
doi: 10.1007/s00415-020-10095-z
Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).
pubmed: 16195466
doi: 10.1126/science.1117256
Tanabe, S. et al. Altered global brain signal during physiologic, pharmacologic, and pathologic states of unconsciousness in humans and rats. Anesthesiology 132, 1392–1406 (2020).
pubmed: 32205548
doi: 10.1097/ALN.0000000000003197
Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2, 91–101 (2012).
pubmed: 22559794
pmcid: 3624768
doi: 10.1089/brain.2011.0068
Hindriks, R. et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256 (2016).
pubmed: 26631813
doi: 10.1016/j.neuroimage.2015.11.055
Xie, H. et al. Time-varying whole-brain functional network connectivity coupled to task engagement. Netw. Neurosci. 3, 49–66 (2019).
pubmed: 30793073
doi: 10.1162/netn_a_00051
Alonso Martínez, S., Deco, G., Ter Horst, G. J. & Cabral, J. The dynamics of functional brain networks associated with depressive symptoms in a nonclinical sample. Front. Neural Circuits 14, 570583 (2020).
pubmed: 33071760
pmcid: 7530893
doi: 10.3389/fncir.2020.570583
Vohryzek, J., Deco, G., Cessac, B., Kringelbach, M. L. & Cabral, J. Ghost attractors in spontaneous brain activity: recurrent excursions into functionally-relevant BOLD phase-locking states. Front. Syst. Neurosci. 14, 20 (2020).
pubmed: 32362815
pmcid: 7182014
doi: 10.3389/fnsys.2020.00020
Bracewell, R. N. The Fourier transform and its applications. (McGraw Hill, 2000).
Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).
pubmed: 24550805
pmcid: 3909994
doi: 10.3389/fnhum.2014.00020
Carhart-Harris, R. L. The entropic brain—revisited. Neuropharmacology 142, 167–178 (2018).
pubmed: 29548884
doi: 10.1016/j.neuropharm.2018.03.010
Herzog, R. et al. A whole-brain model of the neural entropy increase elicited by psychedelic drugs. Sci. Rep. 13, 6244 (2023).
pubmed: 37069186
pmcid: 10110594
doi: 10.1038/s41598-023-32649-7
Filipchuk, A., Schwenkgrub, J., Destexhe, A. & Bathellier, B. Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex. Nat. Neurosci. 25, 1327–1338 (2022).
pubmed: 36171431
pmcid: 9534770
doi: 10.1038/s41593-022-01168-5
Luppi, A. I. et al. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat. Commun. 15, 2171 (2024).
pubmed: 38462641
pmcid: 10925605
doi: 10.1038/s41467-024-46382-w
Andrillon, T., Burns, A., Mackay, T., Windt, J. & Tsuchiya, N. Predicting lapses of attention with sleep-like slow waves. Nat. Commun. 12, 3657 (2021).
pubmed: 34188023
pmcid: 8241869
doi: 10.1038/s41467-021-23890-7
Andrillon, T. et al. Does the mind wander when the brain takes a break? Local sleep in wakefulness, attentional lapses and mind-wandering. Front. Neurosci. 13, 949 (2019).
pubmed: 31572112
pmcid: 6753166
doi: 10.3389/fnins.2019.00949
Kawagoe, T., Onoda, K. & Yamaguchi, S. The neural correlates of ‘mind blanking’: when the mind goes away. Hum. Brain Mapp. 40, 4934–4940 (2019).
pubmed: 31389642
pmcid: 6865483
doi: 10.1002/hbm.24748
Barttfeld, P. et al. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. Neuroimage Clin. 9, 385–391 (2015).
pubmed: 26509121
pmcid: 4588413
doi: 10.1016/j.nicl.2015.08.013
Siclari, F. et al. The neural correlates of dreaming. Nat. Neurosci. 20, 872–878 (2017).
pubmed: 28394322
pmcid: 5462120
doi: 10.1038/nn.4545
Oken, B. S., Salinsky, M. C. & Elsas, S. M. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117, 1885–1901 (2006).
pubmed: 16581292
pmcid: 2865224
doi: 10.1016/j.clinph.2006.01.017
Vidaurre, D. et al. Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat. Commun. 9, 2987 (2018).
pubmed: 30061566
pmcid: 6065434
doi: 10.1038/s41467-018-05316-z
Vidaurre, D. et al. Spectrally resolved fast transient brain states in electrophysiological data. Neuroimage 126, 81–95 (2016).
pubmed: 26631815
doi: 10.1016/j.neuroimage.2015.11.047
Sitt, J. D. et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137, 2258–2270 (2014).
pubmed: 24919971
pmcid: 4610185
doi: 10.1093/brain/awu141
Della Bella, G. et al. EEG brain states for real-time detection of covert cognition in disorders of consciousness. https://osf.io/preprints/psyarxiv/dbzp6 (2022).
Golkowski, D. et al. Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced unconsciousness identified by functional magnetic resonance imaging. Anesthesiology 130, 898–911 (2019).
pubmed: 31045899
doi: 10.1097/ALN.0000000000002704
Signorelli, C. M., Uhrig, L., Kringelbach, M., Jarraya, B. & Deco, G. Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neuroimage 227, 117618 (2021).
pubmed: 33307225
doi: 10.1016/j.neuroimage.2020.117618
Glover, G. H., Li, T. Q. & Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–167 (2000).
pubmed: 10893535
doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
Varley, T. F. et al. Consciousness & brain functional complexity in propofol anaesthesia. Sci. Rep. 10, 1018 (2020).
pubmed: 31974390
pmcid: 6978464
doi: 10.1038/s41598-020-57695-3
Naci, L. et al. Functional diversity of brain networks supports consciousness and verbal intelligence. Sci. Rep. 8, 13259 (2018).
pubmed: 30185912
pmcid: 6125486
doi: 10.1038/s41598-018-31525-z
Kandeepan, S. et al. Modeling an auditory stimulated brain under altered states of consciousness using the generalized Ising model. Neuroimage 223, 117367 (2020).
pubmed: 32931944
doi: 10.1016/j.neuroimage.2020.117367
Yip, G. M. S. et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat. Chem. Biol. 9, 715–720 (2013).
pubmed: 24056400
pmcid: 3951778
doi: 10.1038/nchembio.1340
Jurd, R. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J. 17, 250–252 (2003).
pubmed: 12475885
doi: 10.1096/fj.02-0611fje
Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).
pubmed: 24811386
doi: 10.1016/j.neuron.2014.03.020
Luppi, A. I. et al. Preserved fractal character of structural brain networks is associated with covert consciousness after severe brain injury. Neuroimage Clin. 30, 102682 (2021).
pubmed: 34215152
pmcid: 8102619
doi: 10.1016/j.nicl.2021.102682
Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016).
pubmed: 27523449
doi: 10.1016/j.neuroimage.2016.08.016
Leemans, A. & Jones, D. K. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 (2009).
pubmed: 19319973
doi: 10.1002/mrm.21890
Yeh, F.-C., Wedeen, V. J. & Tseng, W.-Y. I. Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage 55, 1054–1062 (2011).
pubmed: 21232611
doi: 10.1016/j.neuroimage.2010.11.087
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).
pubmed: 11771995
doi: 10.1006/nimg.2001.0978
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).
pubmed: 8126267
doi: 10.1097/00004728-199403000-00005
Naci, L. et al. Using anesthesia-induced loss of consciousness to identify biomarkers of conscious awareness in the healthy human brain. https://doi.org/10.18112/openneuro.ds003171.v1.0.0 (2018).
Castro, P. & Cofre, R. Phase coherence analysis in Python. https://doi.org/10.5281/zenodo.13374393 (2024).