Ensemble and optimization algorithm in support vector machines for classification of wheat genotypes.

Ensemble algorithm Ensemble weighted average (EWA) Radial basis function Support vector machine Wheat genotypes classification

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 Sep 2024
Historique:
received: 28 05 2024
accepted: 03 09 2024
medline: 1 10 2024
pubmed: 1 10 2024
entrez: 30 9 2024
Statut: epublish

Résumé

This study aimed to classifying wheat genotypes using support vector machines (SVMs) improved with ensemble algorithms and optimization techniques. Utilizing data from 302 wheat genotypes and 14 morphological attributes to evaluate six SVM kernels: linear, radial basis function (RBF), sigmoid, and polynomial degrees 1-3. Various optimization methods, including grid search, random search, genetic algorithms, differential evolution, and particle swarm optimization, were used. The radial basis function kernel achieves the highest accuracy at 93.2%, and the weighted accuracy ensemble further improves it to 94.9%. This study shows the effectiveness of these methods in agricultural research and crop improvement. Notably, optimization-based SVM classification, particularly with particle swarm optimization, saw a significant 1.7% accuracy gain in the test set, reaching 94.9% accuracy. These findings underscore the efficacy of RBF kernels and optimization techniques in improving wheat genotype classification accuracy and highlight the potential of SVMs in agricultural research and crop improvement endeavors.

Identifiants

pubmed: 39349934
doi: 10.1038/s41598-024-72056-0
pii: 10.1038/s41598-024-72056-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22728

Subventions

Organisme : King Khalid University
ID : RGP.2/67/45
Organisme : Princess Nourah Bint Abdulrahman University
ID : PNURSP2024R584
Organisme : National Research Foundation of Korea
ID : NRF-2021R1F1A1062849

Informations de copyright

© 2024. The Author(s).

Références

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L. & Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 408, 189–215 (2020).
doi: 10.1016/j.neucom.2019.10.118
Zhang, Y., Cao, G., Wang, B. & Li, X. A novel ensemble method for k-nearest neighbor. Pattern Recognit. 85, 13–25 (2019).
doi: 10.1016/j.patcog.2018.08.003
Marcot, B. G. & Penman, T. D. Advances in Bayesian network modelling: Integration of modelling technologies. Environ. Model. Softw. 111, 386–393 (2019).
doi: 10.1016/j.envsoft.2018.09.016
Huang, D.-S., Ip, H. H. S., Law, K. C. K. & Chi, Z. Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 16, 721–732 (2005).
pubmed: 15940999 doi: 10.1109/TNN.2005.844912
Trabelsi, A., Elouedi, Z. & Lefevre, E. Decision tree classifiers for evidential attribute values and class labels. Fuzzy Sets Syst. 366, 46–62 (2019).
doi: 10.1016/j.fss.2018.11.006
Huang, D.-S. & Du, J.-X. A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19, 2099–2115 (2008).
pubmed: 19054734 doi: 10.1109/TNN.2008.2004370
Zhang, M., Qu, H., Xie, X. & Kurths, J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing 219, 333–349 (2017).
doi: 10.1016/j.neucom.2016.09.044
Vapnik, V. Statistical Learning Theory Vol. 1 (Wiley, 1998).
Vapnik, V. N. The Nature of Statistical Lemming Theory 286 (Springer, 1995).
Liang, X., Zhu, L. & Huang, D.-S. Multi-task ranking SVM for image cosegmentation. Neurocomputing 247, 126–136 (2017).
doi: 10.1016/j.neucom.2017.03.060
Zhu, F., Chen, W., Guo, F. & Zhang, X. Combining context connectivity and behavior association to develop an indoor/outdoor context detection model with smartphone multisensor fusion. IEEE Internet Things J. 11, 2883–2898 (2024).
doi: 10.1109/JIOT.2023.3293792
Hu, J., Peng, Y., Lin, Q., Liu, H. & Zhou, Q. An ensemble weighted average conservative multi-fidelity surrogate modeling method for engineering optimization. Eng. Comput. 38, 2221–2244 (2022).
doi: 10.1007/s00366-020-01203-8
Suh, M.-S. et al. Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Clim. 25, 7067–7082 (2012).
doi: 10.1175/JCLI-D-11-00457.1
Ghosh, P. et al. Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 9, 19304–19326 (2021).
doi: 10.1109/ACCESS.2021.3053759
Ardjani, F., Sadouni, K. & Benyettou, M. Optimization of SVM MultiClass by particle swarm (PSO-SVM). In 2010 2nd International Workshop on Database Technology and Applications 1–4 (IEEE, 2010). https://doi.org/10.1109/DBTA.2010.5658994 .
Dudzik, W., Kawulok, M. & Nalepa, J. Evolutionarily-tuned support vector machines. In Proceedings of the Genetic and Evolutionary Computation Conference Companion 165–166 (ACM, 2019). https://doi.org/10.1145/3319619.3321924 .
Huang, C.-L. & Dun, J.-F. A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8, 1381–1391 (2008).
doi: 10.1016/j.asoc.2007.10.007
Dudzik, W., Nalepa, J. & Kawulok, M. Evolving data-adaptive support vector machines for binary classification. Knowl.-Based Syst. 227, 107221 (2021).
doi: 10.1016/j.knosys.2021.107221
Hitam, N. A., Ismail, A. R. & Saeed, F. An optimized support vector machine (SVM) based on particle swarm optimization (PSO) for cryptocurrency forecasting. Procedia Comput. Sci. 163, 427–433 (2019).
doi: 10.1016/j.procs.2019.12.125
Luo, Z., Xiang, M. & Zhang, X. Multi-class wavelet SVM classifiers using quantum particles swarm optimization algorithm. In 2008 International Symposium on Computational Intelligence and Design 278–281 (IEEE, 2008). https://doi.org/10.1109/ISCID.2008.93 .
Liao, R. J., Zheng, H. B., Grzybowski, S. & Yang, L. J. A multiclass SVM-based classifier for transformer fault diagnosis using a particle swarm optimizer with time-varying acceleration coefficients. Int. Trans. Electr. Energy Syst. 23, 181–190 (2013).
doi: 10.1002/etep.651
Li, J. & Li, B. Parameters selection for support vector machine based on particle swarm optimization. In International Conference on Intelligent Computing (eds. Huang, D., Bevilacqua, V. & Premaratne, P.) 41–47 (Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, 2014). https://doi.org/10.1007/978-3-319-09333-8_5 .
Nalepa, J., Dudzik, W. & Kawulok, M. Memetic evolution of training sets with adaptive radial basis kernels for support vector machines. In 2020 25th International Conference on Pattern Recognition (ICPR) 5503–5510 (IEEE, 2021). https://doi.org/10.1109/ICPR48806.2021.9412495 .
Nugraha, Y. R., Wibawa, A. P. & Zaeni, I. A. E. Particle swarm optimization—support vector machine (PSO-SVM) algorithm for journal rank classification. In 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE) 69–73 (IEEE, 2019). https://doi.org/10.1109/IC2IE47452.2019.8940822 .
Sheela, M. S. & Arun, C. A. Hybrid PSO–SVM algorithm for Covid-19 screening and quantification. Int. J. Inf. Technol. 14, 2049–2056 (2022).
pubmed: 35036828 pmcid: 8752331
Golcuk, A. & Yasar, A. Classification of bread wheat genotypes by machine learning algorithms. J. Food Compos. Anal. 119, 105253 (2023).
doi: 10.1016/j.jfca.2023.105253
Olgun, M. et al. Wheat grain classification by using dense SIFT features with SVM classifier. Comput. Electron. Agric. 122, 185–190 (2016).
doi: 10.1016/j.compag.2016.01.033
Guevara-Hernandez, F. & Gomez-Gil, J. A machine vision system for classification of wheat and barley grain kernels. Span. J. Agric. Res. 9, 672 (2011).
doi: 10.5424/sjar/20110903-140-10
Gülmezoğlu, M. B. & Gülmezoğlu, N. Classification of bread wheat varieties and their yield characters with the common vector approach. In International Conference on Chemical, Environmental and Biological Sciences (CEBS-2015) March 18–19, 2015 Dubai (UAE) 120–123 (International Institute of Chemical, Biological & Environmental Engineering, 2015). https://doi.org/10.15242/IICBE.C0315090 .
Majumdar, S. & Jayas, D. S. Classification of cereal grains using machine vision: IV. Combined morphology, color, and texture models. Trans. ASAE 43, 1689–1694 (2000).
doi: 10.13031/2013.3069
Majumdar, S. & Jayas, D. S. Classification of cereal grains using machine vision: II. Colormodels. Trans. ASAE 43, 1677–1680 (2000).
doi: 10.13031/2013.3067
Majumdar, S. & Jayas, D. S. Classification of cereal grains using machine vision: I. Morphology models. Trans. ASAE 43, 1669–1675 (2000).
doi: 10.13031/2013.3107
Yasar, A., Golcuk, A. & Sari, O. F. Classification of bread wheat varieties with a combination of deep learning approach. Eur. Food Res. Technol. 250, 181–189 (2024).
doi: 10.1007/s00217-023-04375-x
Kılıçarslan, S. & Kılıçarslan, S. A comparative study of bread wheat varieties identification on feature extraction, feature selection and machine learning algorithms. Eur. Food Res. Technol. 250, 135–149 (2024).
doi: 10.1007/s00217-023-04372-0
Ismail, A. et al. A novel deep learning-based model for classification of wheat gene expression. Comput. Syst. Sci. Eng. 48, 273–285 (2024).
doi: 10.32604/csse.2023.038192
Zhang, J. & Yang, H. Bounded quantile loss for robust support vector machines-based classification and regression. Expert Syst. Appl. 242, 122759 (2024).
doi: 10.1016/j.eswa.2023.122759
Yeganeh, A., Abbasi, S. A., Shongwe, S. C., Malela-Majika, J.-C. & Shadman, A. R. Evolutionary support vector regression for monitoring Poisson profiles. Soft Comput. https://doi.org/10.1007/s00500-023-09047-2 (2023).
doi: 10.1007/s00500-023-09047-2
Chauhan, V. K., Dahiya, K. & Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 52, 803–855 (2019).
doi: 10.1007/s10462-018-9614-6
Singh, V. K. et al. Novel genetic algorithm (GA) based hybrid machine learning-pedotransfer function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity. Eng. Appl. Comput. Fluid Mech. 16, 1082–1099 (2022).
Yalsavar, M. et al. Kernel parameter optimization for support vector machine based on sliding mode control. IEEE Access 10, 17003–17017 (2022).
doi: 10.1109/ACCESS.2022.3150001
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
doi: 10.1007/BF00994018
Lin, S.-W., Ying, K.-C., Chen, S.-C. & Lee, Z.-J. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35, 1817–1824 (2008).
doi: 10.1016/j.eswa.2007.08.088
Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
pubmed: 17011070 doi: 10.1016/j.tree.2006.09.010
Cherkassky, V. & Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004).
pubmed: 14690712 doi: 10.1016/S0893-6080(03)00169-2
Kayhomayoon, Z., Babaeian, F., Ghordoyee Milan, S., Arya Azar, N. & Berndtsson, R. A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level. Water 14, 751 (2022).
doi: 10.3390/w14050751
Seifi, A., Ehteram, M., Singh, V. P. & Mosavi, A. Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability 12, 4023 (2020).
doi: 10.3390/su12104023
Vapnik, V. The Nature of Statistical Learning Theory (Springer, 1999).
Rifkin, R. & Klautau, A. In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004).
Hastie, T. & Tibshirani, R. Classification by pairwise coupling. In Advances in Neural Information Processing Systems (eds. Jordan, M. I., Kearns, M. J. & Solla, S. A.) vol. 10 507–513 (1997).
Pal, M. Multiclass approaches for support vector machine based land cover classification. Neural Evol. Comput. https://doi.org/10.48550/arXiv.0802.2411 (2008).
doi: 10.48550/arXiv.0802.2411
Wang, H., Zheng, B., Yoon, S. W. & Ko, H. S. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J. Oper. Res. 267, 687–699 (2018).
doi: 10.1016/j.ejor.2017.12.001
Ren, Y., Zhang, L. & Suganthan, P. N. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput. Intell. Mag. 11, 41–53 (2016).
doi: 10.1109/MCI.2015.2471235
Rossi, A. L. D. & Carvalho, A. C. P. L. F. de. Bio-inspired Optimization Techniques for SVM Parameter Tuning. In 2008 10th Brazilian Symposium on Neural Networks 57–62 (IEEE, 2008). https://doi.org/10.1109/SBRN.2008.28 .
Cho, M.-Y. & Hoang, T. T. Feature selection and parameters optimization of SVM using particle swarm optimization for fault classification in power distribution systems. Comput. Intell. Neurosci. 2017, 1–9 (2017).
doi: 10.1155/2017/4135465
Mantovani, R. G., Rossi, A. L. D., Vanschoren, J., Bischl, B. & de Carvalho, A. C. P. L. F. Effectiveness of Random Search in SVM hyper-parameter tuning. In 2015 International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2015). https://doi.org/10.1109/IJCNN.2015.7280664 .
Wu, X., Pan, J. & Zhu, X. Optimizing the ecological source area identification method and building ecological corridor using a genetic algorithm: A case study in Weihe River Basin, NW China. Ecol. Inform. 80, 102519 (2024).
doi: 10.1016/j.ecoinf.2024.102519
Fernandez, M., Caballero, J., Fernandez, L. & Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol. Divers. 15, 269–289 (2011).
pubmed: 20306130 doi: 10.1007/s11030-010-9234-9
Kumar, A. et al. Development of novel hybrid models for prediction of drought- and stress-tolerance indices in teosinte introgressed maize lines using artificial intelligence techniques. Sustainability 14, 2287 (2022).
doi: 10.3390/su14042287
Mallipeddi, R., Suganthan, P. N., Pan, Q. K. & Tasgetiren, M. F. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011).
doi: 10.1016/j.asoc.2010.04.024
Li, J., Ding, L. & Li, B. Differential evolution-based parameters optimisation and feature selection for support vector machine. Int. J. Comput. Sci. Eng. 13, 355 (2016).
Vesterstrom, J. & Thomsen, R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753) vol. 2 1980–1987 (IEEE, 2004).
Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’9—International Conference on Neural Networks vol. 4 1942–1948 (IEEE, 1995).
Al-Thanoon, N. A., Qasim, O. S. & Algamal, Z. Y. A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics. Chemom. Intell. Lab. Syst. 184, 142–152 (2019).
doi: 10.1016/j.chemolab.2018.12.003
Li, X., Wu, S., Li, X., Yuan, H. & Zhao, D. Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese J. Mech. Eng. 33, 6 (2020).
doi: 10.1186/s10033-019-0428-5
Subasi, A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43, 576–586 (2013).
pubmed: 23453053 doi: 10.1016/j.compbiomed.2013.01.020
Bonah, E. et al. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 42, e13236 (2019).
doi: 10.1111/jfpe.13236
Dubey, B. P., Bhagwat, S. G., Shouche, S. P. & Sainis, J. K. Potential of artificial neural networks in varietal identification using morphometry of wheat grains. Biosyst. Eng. 95, 61–67 (2006).
doi: 10.1016/j.biosystemseng.2006.06.001
Masoumiasl, A., Amiri-Fahliani, R. & Khoshroo, A. R. Some local and commercial rice (Oryza sativa L.) varieties comparison for aroma and other qualitative properties. Int. J. Agric. Crop Sci. 5, 2184–2189 (2013).
Zhang, H., Paliwal, P., Jayas, D. S. & White, N. D. G. Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine. Trans. ASABE 50, 1779–1785 (2007).
doi: 10.13031/2013.23935
Yao, Q. et al. Application of support vector machine for detecting rice diseases using shape and color texture features. In 2009 International Conference on Engineering Computation 79–83 (IEEE, 2009). https://doi.org/10.1109/ICEC.2009.73 .
Jian, Z. & Wei, Z. Support vector machine for recognition of cucumber leaf diseases. In 2010 2nd International Conference on Advanced Computer Control vol. 5 264–266 (IEEE, 2010).
Dubey, S. R. & Jalal, A. S. Detection and classification of apple fruit diseases using complete local binary patterns. In 2012 Third International Conference on Computer and Communication Technology 346–351 (IEEE, 2012). https://doi.org/10.1109/ICCCT.2012.76 .
Sengupta, S. & Lee, W. S. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosyst. Eng. 117, 51–61 (2014).
doi: 10.1016/j.biosystemseng.2013.07.007
Bhange, M. & Hingoliwala, H. A. Smart farming: Pomegranate disease detection using image processing. Procedia Comput. Sci. 58, 280–288 (2015).
doi: 10.1016/j.procs.2015.08.022
Chung, C.-L. et al. Detecting Bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 121, 404–411 (2016).
doi: 10.1016/j.compag.2016.01.008
Padol, P. B. & Yadav, A. A. SVM classifier based grape leaf disease detection. In 2016 Conference on Advances in Signal Processing (CASP) 175–179 (IEEE, 2016). https://doi.org/10.1109/CASP.2016.7746160 .
Sharma, D. et al. Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticum aestivum L.). Plant Breed. 135, 538–545 (2016).
doi: 10.1111/pbr.12405
Jenks, G. F. Generalization in statistical mapping. Ann. Assoc. Am. Geogr. 53, 15–26 (1963).
doi: 10.1111/j.1467-8306.1963.tb00429.x
Japkowicz, N. & Shah, M. Evaluating Learning Algorithms: A Classification Perspective (Cambridge University Press, 2011).
doi: 10.1017/CBO9780511921803
Powers, D. M. W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Mach. Learn. https://doi.org/10.48550/arXiv.2010.16061 (2020).
doi: 10.48550/arXiv.2010.16061
Sokolova, M., Japkowicz, N. & Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science (eds. Sattar, A. & Kang, B.) 1015–1021 (Springer, 2006). https://doi.org/10.1007/11941439_114 .
Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).
doi: 10.1177/001316446002000104
Zhang, J., Wang, Y., Sun, Y. & Li, G. Strength of ensemble learning in multiclass classification of rockburst intensity. Int. J. Numer. Anal. Methods Geomech. 44, 1833–1853 (2020).
doi: 10.1002/nag.3111
Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 17, 168–192 (2021).
doi: 10.1016/j.aci.2018.08.003
Melgani, F. & Bazi, Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008).
pubmed: 18779082 doi: 10.1109/TITB.2008.923147
Zhang, Y. & Wu, L. Classification of fruits using computer vision and a multiclass support vector machine. Sensors 12, 12489–12505 (2012).
pubmed: 23112727 pmcid: 3478854 doi: 10.3390/s120912489
Bulanon, D. M., Burks, T. F. & Alchanatis, V. Study on Fruit Visibility for Robotic Harvesting. In 2007 Minneapolis, Minnesota, June 17–20, 2007 (American Society of Agricultural and Biological Engineers, 2007). https://doi.org/10.13031/2013.23428 .
Lu, Q., Cai, J., Zhao, J., Wang, F. & Tang, M. Real-time recognition of citrus on trees in natural scene. Nongye Jixie Xuebao = Trans. Chin. Soc. Agric. Mach. 41, 170–185 (2010).
Zhang, W., Yoshida, T. & Tang, X. Text classification based on multi-word with support vector machine. Knowl.-Based Syst. 21, 879–886 (2008).
doi: 10.1016/j.knosys.2008.03.044
Manurung, J., Mawengkang, H. & Zamzami, E. Optimizing support vector machine parameters with genetic algorithm for credit risk assessment. J. Phys. Conf. Ser. 930, 012026 (2017).
doi: 10.1088/1742-6596/930/1/012026
Lessmann, S., Stahlbock, R. & Crone, S. F. Genetic algorithms for support vector machine model selection. In The 2006 IEEE International Joint Conference on Neural Network Proceedings 3063–3069 (IEEE, 2006). https://doi.org/10.1109/IJCNN.2006.247266 .
Liu, H.-B. & Jiao, Y.-B. Application of genetic algorithm-support vector machine (GA-SVM) for damage identification of bridge. Int. J. Comput. Intell. Appl. 10, 383–397 (2011).
doi: 10.1142/S1469026811003215
Bhadra, T., Bandyopadhyay, S. & Maulik, U. Differential evolution based optimization of SVM parameters for meta classifier design. Procedia Technol. 4, 50–57 (2012).
doi: 10.1016/j.protcy.2012.05.006
Shen, Q., Shi, W.-M., Kong, W. & Ye, B.-X. A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification. Talanta 71, 1679–1683 (2007).
pubmed: 19071508 doi: 10.1016/j.talanta.2006.07.047
Chenglin, Z., Xuebin, S., Songlin, S. & Ting, J. Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine. Expert Syst. Appl. 38, 9908–9912 (2011).
doi: 10.1016/j.eswa.2011.02.043
Liu, X. & Fu, H. PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses. Sci. World J. 2014, 1–7 (2014).

Auteurs

Mujahid Khan (M)

Agricultural Research Station (SKNAU, Jobner), Fatehpur-Shekhawati, Sikar, 332301, India.
Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

B K Hooda (BK)

Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

Arpit Gaur (A)

Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.
ICAR-Indian Institute of Wheat and Barley, Karnal, Haryana, 132001, India.

Vikram Singh (V)

Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

Yogesh Jindal (Y)

Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

Hemender Tanwar (H)

Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

Sushma Sharma (S)

Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.

Sonia Sheoran (S)

ICAR-Indian Institute of Wheat and Barley, Karnal, Haryana, 132001, India.

Dinesh Kumar Vishwakarma (DK)

Department of Irrigation and Drainage Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, 263145, India. dinesh.vishwakarma4820@gmail.com.

Mohammad Khalid (M)

Department of Pharmaceutics, College of Pharmacy, King Khalid University, 61421, Abha, Asir, Saudi Arabia.

Ghadah Shukri Albakri (GS)

Department of Teaching and Learning, College of Education and Human Development, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

Maha Awjan Alreshidi (MA)

Department of Chemistry, University of Ha'il, 81441, Ha'il, Saudi Arabia.

Jeong Ryeol Choi (JR)

School of Electronic Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do, 16227, Republic of Korea. choiardor@hanmail.net.

Krishna Kumar Yadav (KK)

Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India.
Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, 64001, Iraq.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Populus Soil Microbiology Soil Microbiota Fungi

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH