Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
30 Sep 2024
Historique:
received: 11 01 2024
accepted: 20 09 2024
revised: 13 09 2024
medline: 1 10 2024
pubmed: 1 10 2024
entrez: 30 9 2024
Statut: aheadofprint

Résumé

MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits. Unexpectedly, we found that decreased neurogenesis was accompanied by activation of a micro-(mi)RNA-mediated gliogenesis pathway. We also demonstrate network-level hyperexcitability in MHS neurons, as evidenced by excessive synaptic and extrasynaptic activity contributing to excitatory/inhibitory (E/I) imbalance. Notably, the predominantly extrasynaptic (e)NMDA receptor antagonist, NitroSynapsin, corrects this aberrant electrical activity associated with abnormal phenotypes. During neurodevelopment, MEF2C regulates many ASD-associated gene networks, suggesting that treatment of MHS deficits may possibly help other forms of ASD as well.

Identifiants

pubmed: 39349966
doi: 10.1038/s41380-024-02761-9
pii: 10.1038/s41380-024-02761-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIA NIH HHS
ID : R35 AG071734
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG057409
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG056259
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA048882
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS086890
Pays : United States
Organisme : NIDA NIH HHS
ID : DP1 DA041722
Pays : United States
Organisme : California Institute for Regenerative Medicine (CIRM)
ID : DISC2-11070
Organisme : Autism Speaks (Autism Speaks Inc.)
ID : postdoctoral fellowship grant #11721

Informations de copyright

© 2024. The Author(s).

Références

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th Ed. American Psychiatric Association; 2013. United States.
Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators, Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21.
Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, Van De Water J, Pessah IN. The CHARGE Study: an epidemiologic investigation of genetic and environmentalfactors contributing to autism. Environ Health Perspect. 2006;114:1119–25.
pubmed: 16835068 pmcid: 1513329 doi: 10.1289/ehp.8483
Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry. 2015;77:66–74.
pubmed: 25483344 doi: 10.1016/j.biopsych.2014.11.001
Leifer D, Krainc D, Yu YT, McDermott J, Breitbart RE, Heng J, et al. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc Natl Acad Sci USA. 1993;90:1546–50.
pubmed: 7679508 pmcid: 45911 doi: 10.1073/pnas.90.4.1546
Martin JF, Schwarz JJ, Olson EN. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci USA. 1993;90:5282–6.
pubmed: 8506376 pmcid: 46700 doi: 10.1073/pnas.90.11.5282
Gossett LA, Kelvin DJ, Sternberg EA, Olson EN. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989;9:5022–33.
pubmed: 2601707 pmcid: 363654
Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991;5:2327–41.
pubmed: 1748287 doi: 10.1101/gad.5.12a.2327
Yu YT, Breitbart RE, Smoot LB, Lee Y, Mahdavi V, Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992;6:1783–98.
pubmed: 1516833 doi: 10.1101/gad.6.9.1783
Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134:4131–40.
pubmed: 17959722 doi: 10.1242/dev.008367
Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD, et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci USA. 2008;105:9397–402.
pubmed: 18599437 pmcid: 2453715 doi: 10.1073/pnas.0802876105
Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ, et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci. 2008;28:6557–68.
pubmed: 18579729 pmcid: 2679693 doi: 10.1523/JNEUROSCI.0134-08.2008
Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999;286:785–90.
pubmed: 10531066 doi: 10.1126/science.286.5440.785
Barbosa AC, Kim M-S, Ertunc M, Adachi M, Nelson ED, McAnally J, et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci USA. 2008;105:9391–6.
pubmed: 18599438 pmcid: 2453723 doi: 10.1073/pnas.0802679105
Harrington AJ, Bridges CM, Berto S, Blankenship K, Cho JY, Assali A, et al. MEF2C hypofunction in neuronal and neuroimmune populations produces MEF2C haploinsufficiency syndrome–like behaviors in mice. Biol Psychiatry. 2020;88:488–99.
pubmed: 32418612 pmcid: 7483399 doi: 10.1016/j.biopsych.2020.03.011
Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. eLife. 2016;5:e20059.
pubmed: 27779093 pmcid: 5094851 doi: 10.7554/eLife.20059
Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320:1224–9.
pubmed: 18511691 pmcid: 2443785 doi: 10.1126/science.1153252
Zweier M, Gregor A, Zweier C, Engels H, Sticht H, Wohlleber E, et al. Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat. 2010;31:722–33.
pubmed: 20513142 doi: 10.1002/humu.21253
Morrow EM, Yoo S-Y, Flavell SW, Kim T-K, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321:218–23.
pubmed: 18621663 pmcid: 2586171 doi: 10.1126/science.1157657
Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.
pubmed: 24267887 pmcid: 3934107 doi: 10.1016/j.cell.2013.10.031
Gilissen C, Hehir-Kwa JY, Thung DT, Van De Vorst M, Van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.
pubmed: 24896178 doi: 10.1038/nature13394
Le Meur N, Holder-Espinasse M, Jaillard S, Goldenberg A, Joriot S, Amati-Bonneau P, et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J Med Genetics. 2010;47:22–9.
doi: 10.1136/jmg.2009.069732
Novara F, Beri S, Giorda R, Ortibus E, Nageshappa S, Darra F, et al. Refining the phenotype associated with MEF2C haploinsufficiency. Clin Genetics. 2010;78:471–7.
doi: 10.1111/j.1399-0004.2010.01413.x
Nowakowska BA, Obersztyn E, Szymańska K, Bekiesińska‐Figatowska M, Xia Z, Ricks CB, et al. Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J of Med Genetics Part B. 2010;153B:1042–51.
doi: 10.1002/ajmg.b.31071
Paciorkowski AR, Traylor RN, Rosenfeld JA, Hoover JM, Harris CJ, Winter S, et al. MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics. 2013;14:99–111.
pubmed: 23389741 pmcid: 3773516 doi: 10.1007/s10048-013-0356-y
Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.
pubmed: 21614001 pmcid: 3607626 doi: 10.1038/nature10110
Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, et al. Human-specific transcriptional networks in the brain. Neuron. 2012;75:601–17.
pubmed: 22920253 pmcid: 3645834 doi: 10.1016/j.neuron.2012.05.034
Sun W, Poschmann J, Cruz-Herrera Del Rosario R, Parikshak NN, Hajan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell. 2016;167:1385–1397.e11.
pubmed: 27863250 doi: 10.1016/j.cell.2016.10.031
Assali A, Harrington AJ, Cowan CW. Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol. 2019;59:49–58.
pubmed: 31129473 pmcid: 6874740 doi: 10.1016/j.conb.2019.04.008
Tu S, Akhtar MW, Escorihuela RM, Amador-Arjona A, Swarup V, Parker J, et al. NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism. Nat Commun. 2017;8:1488.
pubmed: 29133852 pmcid: 5684358 doi: 10.1038/s41467-017-01563-8
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.
pubmed: 21460823 doi: 10.1038/nmeth.1591
Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. eLife. 2019;8:e50333.
pubmed: 31782729 pmcid: 6905854 doi: 10.7554/eLife.50333
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.
pubmed: 19252484 pmcid: 2756723 doi: 10.1038/nbt.1529
Sloan SA, Andersen J, Pașca AM, Birey F, Pașca SP. Generation and assembly of human brain region–specific three-dimensional cultures. Nat Protoc. 2018;13:2062–85.
pubmed: 30202107 pmcid: 6597009 doi: 10.1038/s41596-018-0032-7
Liu H, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia. 2006;54:343–57.
pubmed: 16883573 doi: 10.1002/glia.20400
Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 2010;38:D792–9.
pubmed: 19906719 doi: 10.1093/nar/gkp1005
Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell. 2013;155:1351–64.
pubmed: 24290359 pmcid: 4028128 doi: 10.1016/j.cell.2013.11.009
Okamoto S, Li Z, Ju C, Scholzke MN, Mathews E, Cui J, et al. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci USA. 2002;99:3974–9.
pubmed: 11904443 pmcid: 122633 doi: 10.1073/pnas.022036399
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Garcia-Bassets I, Kwon Y-S, Telese F, Prefontaine GG, Hutt KR, Cheng CS, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell. 2007;128:505–18.
pubmed: 17289570 pmcid: 1994663 doi: 10.1016/j.cell.2006.12.038
Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell. 2006;124:615–29.
pubmed: 16469706 doi: 10.1016/j.cell.2005.12.032
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;570:523–7.
pubmed: 31168097 pmcid: 6906116 doi: 10.1038/s41586-019-1289-x
Xie P, Gao M, Wang C, Zhang J, Noel P, Yang C, et al. SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res. 2019;47:e48–e48.
pubmed: 30799483 pmcid: 6486558 doi: 10.1093/nar/gkz116
Yoon S-J, Elahi LS, Pașca AM, Marton RM, Gordon A, Revah O, et al. Reliability of human cortical organoid generation. Nat Methods. 2019;16:75–8.
pubmed: 30573846 doi: 10.1038/s41592-018-0255-0
Prè D, Nestor MW, Sproul AA, Jacob S, Koppensteiner P, Chinchalongporn V, et al. A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS ONE. 2014;9:e103418.
pubmed: 25072157 pmcid: 4114788 doi: 10.1371/journal.pone.0103418
Bardy C, Van Den Hurk M, Kakaradov B, Erwin JA, Jaeger BN, Hernandez RV, et al. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol Psychiatry. 2016;21:1573–88.
pubmed: 27698428 pmcid: 5071135 doi: 10.1038/mp.2016.158
Mongiat LA, Espósito MS, Lombardi G, Schinder AF. Reliable activation of immature neurons in the adult hippocampus. PLoS ONE. 2009;4:e5320.
pubmed: 19399173 pmcid: 2670498 doi: 10.1371/journal.pone.0005320
Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503:267–71.
pubmed: 24132240 pmcid: 5559273 doi: 10.1038/nature12618
Ghatak S, Dolatabadi N, Gao R, Wu Y, Scott H, Trudler D, et al. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry. 2021;26:5751–65.
pubmed: 32467645 doi: 10.1038/s41380-020-0776-7
Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 2002;5:405–14.
pubmed: 11953750 doi: 10.1038/nn835
Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA. 2013;110:E2518-27.
Rosser AE, Tyers P, Ter Borg M, Dunnett SB, Svendsen CN. Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Dev Brain Res. 1997;98:291–5.
doi: 10.1016/S0165-3806(96)00189-7
Shu R, Wong W, Ma QH, Yang ZZ, Zhu H, Liu FJ, et al. APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation. Cell Death Dis. 2015;6:e1651–e1651.
pubmed: 25695604 pmcid: 4669786 doi: 10.1038/cddis.2015.10
Kawahara H, Imai T, Okano H. MicroRNAs in neural stem cells and neurogenesis. Front Neurosci. 2012;6:30.
Chan SF, Huang X, McKercher SR, Zaidi R, Okamoto S-I, Nakanishi N, et al. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells. Genom Data. 2015;3:24–7.
pubmed: 25485232 doi: 10.1016/j.gdata.2014.10.022
Cho JA, Park H, Lim EH, Lee KW. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J Genet. 2011;90:81–93.
pubmed: 21677392 doi: 10.1007/s12041-011-0041-6
Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100.
pubmed: 27374120 pmcid: 4930834 doi: 10.1093/database/baw100
Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.
pubmed: 27919067 pmcid: 7102905 doi: 10.1038/nature20612
Südhof TC. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171:745–69.
pubmed: 29100073 pmcid: 5694349 doi: 10.1016/j.cell.2017.10.024
Bai F, Ho Lim C, Jia J, Santostefano K, Simmons C, Kasahara H, et al. Directed differentiation of embryonic stem cells into cardiomyocytes by bacterial injection of defined transcription factors. Sci Rep. 2015;5:15014.
pubmed: 26449528 pmcid: 4598736 doi: 10.1038/srep15014
Reichelt AC, Rodgers RJ, Clapcote SJ. The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology. 2012;62:1519–26.
pubmed: 21262241 doi: 10.1016/j.neuropharm.2011.01.024
Restrepo S, Langer NJ, Nelson KA, Aoto J. Modeling a neurexin-3α human mutation in mouse neurons identifies a novel role in the regulation of transsynaptic signaling and neurotransmitter release at excitatory synapses. J Neurosci. 2019;39:9065–82.
pubmed: 31578233 pmcid: 6855690 doi: 10.1523/JNEUROSCI.1261-19.2019
Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291:657–61.
pubmed: 11158678 doi: 10.1126/science.291.5504.657
Mayer C, Hafemeister C, Bandler RC, Machold R, Batista Brito R, Jaglin X, et al. Developmental diversification of cortical inhibitory interneurons. Nature. 2018;555:457–62.
pubmed: 29513653 pmcid: 6052457 doi: 10.1038/nature25999
Flavell SW, Cowan CW, Kim T-K, Greer PL, Lin Y, Paradis S, et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science. 2006;311:1008–12.
pubmed: 16484497 doi: 10.1126/science.1122511
Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron. 2008;60:1022–38.
pubmed: 19109909 pmcid: 2630178 doi: 10.1016/j.neuron.2008.11.029
Shalizi A, Gaudillière B, Yuan Z, Stegmüller J, Shirogane T, Ge Q, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science. 2006;311:1012–7.
pubmed: 16484498 doi: 10.1126/science.1122513
Takahashi H, Xia P, Cui J, Talantova M, Bodhinathan K, Li W, et al. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci Rep. 2015;5:14781.
pubmed: 26477507 pmcid: 4609936 doi: 10.1038/srep14781
Xia P, Chen HV, Zhang D, Lipton SA. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010;30:11246–50.
pubmed: 20720132 pmcid: 2932667 doi: 10.1523/JNEUROSCI.2488-10.2010
Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009;15:1407–13.
pubmed: 19915593 pmcid: 2789858 doi: 10.1038/nm.2056
Gomez AM, Traunmüller L, Scheiffele P. Neurexins: molecular codes for shaping neuronal synapses. Nat Rev Neurosci. 2021;22:137–51.
pubmed: 33420412 pmcid: 7612283 doi: 10.1038/s41583-020-00415-7
Aoto J, Földy C, Ilcus SMC, Tabuchi K, Südhof TC. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat Neurosci. 2015;18:997–1007.
pubmed: 26030848 pmcid: 4482778 doi: 10.1038/nn.4037
Boxer EE, Seng C, Lukacsovich D, Kim J, Schwartz S, Kennedy MJ, et al. Neurexin-3 defines synapse- and sex-dependent diversity of GABAergic inhibition in ventral subiculum. Cell Rep. 2021;37:110098.
pubmed: 34879268 pmcid: 8763380 doi: 10.1016/j.celrep.2021.110098
Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. 2017;95:779–790.e6.
pubmed: 28817799 pmcid: 5890820 doi: 10.1016/j.neuron.2017.07.035
Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48–53.
pubmed: 28445462 pmcid: 5659341 doi: 10.1038/nature22047
Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA, et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell. 2019;176:743–56.e17.
pubmed: 30735633 pmcid: 6544371 doi: 10.1016/j.cell.2019.01.017
Anthony TE, Klein C, Fishell G, Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 2004;41:881–90.
pubmed: 15046721 doi: 10.1016/S0896-6273(04)00140-0
Li W-K, Zhang S-Q, Peng W-L, Shi Y-H, Yuan B, Yuan Y-T, et al. Whole-brain in vivo base editing reverses behavioral changes in Mef2c-mutant mice. Nat Neurosci. 2024;27:116–28.
pubmed: 38012399 doi: 10.1038/s41593-023-01499-x
Kamath SP, Chen AI. Myocyte enhancer factor 2c regulates dendritic complexity and connectivity of cerebellar Purkinje cells. Mol Neurobiol. 2019;56:4102–19.
pubmed: 30276662 doi: 10.1007/s12035-018-1363-7
Lyons G, Micales B, Schwarz J, Martin J, Olson E. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J Neurosci. 1995;15:5727–38.
pubmed: 7643214 pmcid: 6577647 doi: 10.1523/JNEUROSCI.15-08-05727.1995
Ammothumkandy A, Ravina K, Wolseley V, Tartt AN, Yu P-N, Corona L, et al. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci. 2022;25:493–503.
pubmed: 35383330 pmcid: 9097543 doi: 10.1038/s41593-022-01044-2
Araque A, Navarrete M. Glial cells in neuronal network function. Phil Trans R Soc B. 2010;365:2375–81.
pubmed: 20603358 pmcid: 2894949 doi: 10.1098/rstb.2009.0313
Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22:6309–14.
pubmed: 12151506 pmcid: 6758181 doi: 10.1523/JNEUROSCI.22-15-06309.2002
Mohajeri K, Yadav R, D’haene E, Boone PM, Erdin S, Gao D, et al. Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models. Am J Human Genetics. 2022;109:2049–67.
doi: 10.1016/j.ajhg.2022.09.015
Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.
pubmed: 14606691 doi: 10.1034/j.1601-183X.2003.00037.x
Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162:375–90.
pubmed: 26186191 pmcid: 4519016 doi: 10.1016/j.cell.2015.06.034
Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry. 2019;24:1248–57.
pubmed: 31089192 pmcid: 6742424 doi: 10.1038/s41380-019-0426-0
Joshi G, Biederman J, Wozniak J, Goldin RL, Crowley D, Furtak S, et al. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci. 2013;263:379–84.
pubmed: 22986449 doi: 10.1007/s00406-012-0369-9
Soldner F, Jaenisch R. Stem cells, genome editing, and the path to translational medicine. Cell. 2018;175:615–32.
pubmed: 30340033 pmcid: 6461399 doi: 10.1016/j.cell.2018.09.010

Auteurs

Dorit Trudler (D)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Swagata Ghatak (S)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.
School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, an Off Campus Center of Homi Bhabha National Institute, Jatani, Odisha, India.

Michael Bula (M)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

James Parker (J)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Maria Talantova (M)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Melissa Luevanos (M)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Sergio Labra (S)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Titas Grabauskas (T)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Sarah Moore Noveral (SM)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.
Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.

Mayu Teranaka (M)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Emily Schahrer (E)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Nima Dolatabadi (N)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Clare Bakker (C)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Kevin Lopez (K)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Abdullah Sultan (A)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Parth Patel (P)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Agnes Chan (A)

Translational Genomics Research Institute, Phoenix, AZ, USA.

Yongwook Choi (Y)

Translational Genomics Research Institute, Phoenix, AZ, USA.

Riki Kawaguchi (R)

Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Pawel Stankiewicz (P)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

Ivan Garcia-Bassets (I)

Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.

Piotr Kozbial (P)

Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.

Michael G Rosenfeld (MG)

Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.

Nobuki Nakanishi (N)

Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Daniel H Geschwind (DH)

Department of Neurology, Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Department of Human Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Shing Fai Chan (SF)

Center for Neuroscience, Aging, and Stem Cell Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
Department of Medicine, Indiana University-Purdue University, Indianapolis, IN, USA.

Wei Lin (W)

Translational Genomics Research Institute, Phoenix, AZ, USA.

Nicholas J Schork (NJ)

Translational Genomics Research Institute, Phoenix, AZ, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Rajesh Ambasudhan (R)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.

Stuart A Lipton (SA)

Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA. slipton@scripps.edu.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA. slipton@scripps.edu.
Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA. slipton@scripps.edu.

Classifications MeSH